26 resultados para 11230443 M3

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DFT and TD-DFT calculations (ADF program) were performed in order to analyze the electronic structure of the [M-3(CO)(12)] clusters (M = Ru, Os) and interpret their electronic spectra. The highest occupied molecular orbitals are M-M bonding (sigma) involving different M-M bonds, both for Ru and Os. They participate in low-energy excitation processes and their depopulation should weaken M-M bonds in general. While the LUMO is M-NI and M-CO anti-bonding (sigma*), the next, higher-lying empty orbitals have a main contribution from CO (pi*) and either a small (Ru) or an almost negligible one (Os) from the metal atoms. The main difference between the two clusters comes from the different nature of these low-energy unoccupied orbitals that have a larger metal contribution in the case of ruthenium. The photochemical reactivity of the two clusters is reexamined and compared to earlier interpretations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stannylene [SnR2] (R = CH(SiMe3)2) reacts in different ways with the three dodecacarbonyls of the iron triad: [Fe3(CO)12] gives [Fe2(CO)8(μ-SnR2)], [Ru3(CO)12] gives the planar pentametallic cluster [Ru3(CO)10(μ-SnR2)2], for which a full structural analysis is reported, while [Os3(CO)12] fails to react. Different products are also obtained from three nitrile derivatives: [Fe3-(CO)11(MeCN)] gives [Fe2(CO)6(μ-SnR2)2], which has a structure significantly different from that of known Fe2Sn2 clusters, [Ru3(CO)10(MeCN)2] gives the pentametallic cluster described above, while [Os3(CO)10(MeCN)2] gives the isostructural osmium analogue, which shows the unusual feature of a CO group bridging two osmium atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A coupled ocean–atmosphere general circulation model is used to investigate the modulation of El Niño–Southern Oscillation (ENSO) variability due to a weakened Atlantic thermohaline circulation (THC). The THC weakening is induced by freshwater perturbations in the North Atlantic, and leads to a well-known sea surface temperature dipole and a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic. Through atmospheric teleconnections and local coupled air–sea feedbacks, a meridionally asymmetric mean state change is generated in the eastern equatorial Pacific, corresponding to a weakened annual cycle, and westerly anomalies develop over the central Pacific. The westerly anomalies are associated with anomalous warming of SST, causing an eastward extension of the west Pacific warm pool particularly in August–February, and enhanced precipitation. These and other changes in the mean state lead in turn to an eastward shift of the zonal wind anomalies associated with El Niño events, and a significant increase in ENSO variability. In response to a 1-Sv (1 Sv ≡ 106 m3 s−1) freshwater input in the North Atlantic, the THC slows down rapidly and it weakens by 86% over years 50–100. The Niño-3 index standard deviation increases by 36% during the first 100-yr simulation relative to the control simulation. Further analysis indicates that the weakened THC not only leads to a stronger ENSO variability, but also leads to a stronger asymmetry between El Niño and La Niña events. This study suggests a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific and indicates that fluctuations of the THC can mediate not only mean climate globally but also modulate interannual variability. The results may contribute to understanding both the multidecadal variability of ENSO activity during the twentieth century and longer time-scale variability of ENSO, as suggested by some paleoclimate records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] We estimate that about 1 km3 of andesitic lava has been produced at Soufrière Hills Volcano, Montserrat from 1995 to 2009. There were three major episodes of extrusion, each lasting about 2 to 3.5 years and producing about 280 to 340 M m3 of lava, and one minor episode. Our estimates account for the dense rock equivalent volumetric contributions from the core and talus components of the lava dome, pyroclastic flow deposits and air-fall deposits. By 2005 at least two thirds of the erupted mass has already entered the sea. The average lava flux across the major extrusion episodes has been 3–5 m3s−1, with short-period (10–15 days) pulses up to 10–20 m3s−1. The first and third episodes of extrusion show similar flux histories suggesting similar behaviour of the system ten years apart. Waning flux towards the end of each episode may be caused by declining overpressure in the magma reservoir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During many lava dome-forming eruptions, persistent rockfalls and the concurrent development of a substantial talus apron around the foot of the dome are important aspects of the observed activity. An improved understanding of internal dome structure, including the shape and internal boundaries of the talus apron, is critical for determining when a lava dome is poised for a major collapse and how this collapse might ensue. We consider a period of lava dome growth at the Soufrière Hills Volcano, Montserrat, from August 2005 to May 2006, during which a 100 × 106 m3 lava dome developed that culminated in a major dome-collapse event on 20 May 2006. We use an axi-symmetrical Finite Element Method model to simulate the growth and evolution of the lava dome, including the development of the talus apron. We first test the generic behaviour of this continuum model, which has core lava and carapace/talus components. Our model describes the generation rate of talus, including its spatial and temporal variation, as well as its post-generation deformation, which is important for an improved understanding of the internal configuration and structure of the dome. We then use our model to simulate the 2005 to 2006 Soufrière Hills dome growth using measured dome volumes and extrusion rates to drive the model and generate the evolving configuration of the dome core and carapace/talus domains. The evolution of the model is compared with the observed rockfall seismicity using event counts and seismic energy parameters, which are used here as a measure of rockfall intensity and hence a first-order proxy for volumes. The range of model-derived volume increments of talus aggraded to the talus slope per recorded rockfall event, approximately 3 × 103–13 × 103 m3 per rockfall, is high with respect to estimates based on observed events. From this, it is inferred that some of the volumetric growth of the talus apron (perhaps up to 60–70%) might have occurred in the form of aseismic deformation of the talus, forced by an internal, laterally spreading core. Talus apron growth by this mechanism has not previously been identified, and this suggests that the core, hosting hot gas-rich lava, could have a greater lateral extent than previously considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both airborne spores of Rhynchosporium secalis and seed infection have been implied as major sources of primary inoculum for barley leaf blotch (scald) epidemics in fields without previous history of barley cropping. However, little is known about their relative importance in the onset of disease. Results from both quantitative real-time PCR and visual assessments indicated that seed infection was the main source of inoculum in the field trial conducted in this study. Glasshouse studies established that the pathogen can be transmitted from infected seeds into roots, shoots and leaves without causing symptoms. Plants in the field trial remained symptomless for approximately four months before symptoms were observed in the crop. Covering the crop during part of the growing season was shown to prevent pathogen growth, despite the use of infected seed, indicating that changes in the physiological condition of the plant and/or environmental conditions may trigger disease development. However, once the disease appeared in the field it quickly became uniform throughout the cropping area. Only small amounts of R. secalis DNA were measured in 24 h spore-trap tape samples using PCR. Inoculum levels equivalent to spore concentrations between 30 and 60 spores per m3 of air were only detected on three occasions during the growing season. The temporal pattern and level of detection of R. secalis DNA in spore tape samples indicated that airborne inoculum was limited and most likely represented rain-splashed conidia rather than putative ascospores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degeneration of dopaminergic neurons in the substantia nigra has been linked to the formation of the endogenous neurotoxin 5-S-cysteinyl-dopamine. Sulforaphane (SFN), an isothiocyanate derived from the corresponding precursor glucosinolate found in cruciferous vegetables has been observed to exert a range of biological activities in various cell populations. In this study, we show that SFN protects primary cortical neurons against 5-S-cysteinyl-dopamine induced neuronal injury. Pre-treatment of cortical neurons with SFN (0.01-1 microM) resulted in protection against 5-S-cysteinyl-dopamine-induced neurotoxicity, which peaked at 100 nM. This protection was observed to be mediated by the ability of SFN to modulate the extracellular signal-regulated kinase 1 and 2 and the activation of Kelch-like ECH-associated protein 1/NF-E2-related factor-2 leading to the increased expression and activity of glutathione-S-transferase (M1, M3 and M5), glutathione reductase, thioredoxin reductase and NAD(P)H oxidoreductase 1. These data suggest that SFN stimulates the NF-E2-related factor-2 pathway of antioxidant gene expression in neurons and may protect against neuronal injury relevant to the aetiology of Parkinson's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines if shell oxygen isotope ratios (d18Oar) of Unio sp. can be used as a proxy of past discharge of the river Meuse. The proxy was developed from a modern dataset for the reference time interval 1997–2007, which showed a logarithmic relationship between discharge and measured water oxygen isotope ratios(d18Ow). To test this relationship for past time intervals,d18Oar values were measured in the aragonite of the growth increments of four Unio sp. shells; two from a relatively wet period and two from a very dry time interval (1910–1918 and 1969–1977, respectively). Shell d18Oar records were converted into d18Ow values using existing water temperature records. Summer d18Ow values, reconstructed from d18Oar of 1910–1918, showed a similar range as the summer d18Ow values for the reference time interval 1997–2007, whilst summer reconstructed d18Ow values for the time interval 1969–1977 were anomalously high. These high d18Ow values suggest that the river Meuse experienced severe summer droughts during the latter time interval. d18Ow values were then applied to calculate discharge values. It was attempted to estimate discharge from the reconstructed d18Ow values using the logarithmic relationship between d18Ow and discharge. A comparison of the calculated summer discharge results with observed discharge data showed that Meuse low-discharge events below a threshold value of 6 m3/s can be detected in the reconstructed d18Ow records, but true quantification remains problematic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subantarctic mode water (SAMW) has been shown to be a good indicator of anthropogenic climate change in coupled climate models. SAMW in a coupled climate model and the response of modeled SAMW to increasing CO2 are examined in detail. How SAMW adjusts from climatological values toward a new equilibrium in the coupled model, with different climatological temperature and salinity properties, is shown. The combined formation rate of SAMW and Antarctic intermediate water is calculated as approximately 18 Sv (Sv ≡ 106 m3 s−1) in the Indian sector of the Southern Ocean, slightly lower than climatological values would suggest. When forced with increasing CO2, SAMW is produced at a similar rate but at lower densities. This result suggests that the rate of heat uptake in this part of the ocean will be unchanged by anthropogenic forcing. The important signal in the response of SAMW is the shift to colder and fresher values on isopycnals that is believed to be related to changes in thermodynamic surface forcing. It is shown that, given uniform forcing, SAMW is expected to enhance the signal relative to other water masses. Independent increases in surface heating or freshwater forcing can produce changes similar to those observed, but the two different types of forcing are distinguishable using separate forcing experiments, hodographs, and passive anomaly tracers. The changes in SAMW forced by increasing CO2 are dominated by surface heating, but changes to freshwater fluxes are also important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of hexagonal barium ferrite (BaFe12O19) was studied under hydrothermal conditions by a method in which a significant amount of ferrous chloride was introduced along side ferric chloride among the starting materials. Though all of the Fe2+ ions in the starting material were converted to Fe3+ ions in the final product, Fe2+ was confirmed to participate differently from the Fe3+ used in the conventional method in the mechanism of forming barium ferrite. Indeed the efficiency of the synthesis and the quality of the product and the lack of impurities such as Fe2O3 and BaFe2O4 were improved when Fe2+ was included. However, the amount of ferrous ions that could be included to obtain the desired product was limited with an optimum ratio of 2:8 for FeCl2/FeCl3 when only 2h of reaction time were needed. It was also found that the role of trivalent Fe3+ could be successfully replaced by Al3+. Up to 50% of their on could be replaced by Al3+ in the reactants to produce Al- doped products. It was also found that the ratio of Fe2+/M3+ could be increased in the presence of Al3+ to produce high quality barium ferrite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Co-combustion performance trials of Meat and Bone Meal (MBM) and peat were conducted using a bubbling fluidized bed (BFB) reactor. In the combustion performance trials the effects of the co-combustion of MBM and peat on flue gas emissions, bed fluidization, ash agglomeration tendency in the bed and the composition and quality of the ash were studied. MBM was mixed with peat at 6 levels between 15% and 100%. Emissions were predominantly below regulatory limits. CO concentrations in the flue gas only exceeded the 100 mg/m3 limit upon combustion of pure MBM. SO2 emissions were found to be over the limit of 50 mg/m3, while in all trials NOx emissions were below the limit of 300 mg/m3. The HCl content of the flue gases was found to vary near the limit of 30 mg/m3. VOCs however were within their limits. The problem of bed agglomeration was avoided when the bed temperature was about 850 °C and only 20% MBM was co-combusted. This study indicates that a pilot scale BFB reactor can, under optimum conditions, be operated within emission limits when MBM is used as a co-fuel with peat. This can provide a basis for further scale-up development work in industrial scale BFB applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use a global Ocean-Atmosphere General Circulation Model (OAGCM) to show that the major mountain ranges of the world have a significant role in maintenance of the Atlantic Meridional Overturning Circulation (AMOC). A simulation with mountains has a maximum AMOC of 18 Sv (1 Sv=106 m3 s-1) compared with ~0 Sv for a simulation without mountains. Atlantic heat transport at 25N is 1.1 PW with mountains compared to 0.2 PW without. The difference in AMOC is due to major changes in surface heat and freshwater (FW) fluxes over the Atlantic. In the Pacific changed surface fluxes lead to a meridional overturning circulation of 10 Sv. Our results suggest that the effects of mountains on the large-scale atmospheric circulation is to force the ocean towards a state with a vigorous AMOC and with no overturning in the Pacific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A solution of the lidar equation is discussed, that permits combining backscatter and depolarization measurements to quantitatively distinguish two different aerosol types with different depolarization properties. The method has been successfully applied to simultaneous observations of volcanic ash and boundary layer aerosol obtained in Exeter, United Kingdom, on 16 and 18 April 2010, permitting the contribution of the two aerosols to be quantified separately. First a subset of the atmospheric profiles is used where the two aerosol types belong to clearly distinguished layers, for the purpose of characterizing the ash in terms of lidar ratio and depolarization. These quantities are then used in a three‐component atmosphere solution scheme of the lidar equation applied to the full data set, in order to compute the optical properties of both aerosol types separately. On 16 April a thin ash layer, 100–400 m deep, is observed (average and maximum estimated ash optical depth: 0.11 and 0.2); it descends from ∼2800 to ∼1400 m altitude over a 6‐hour period. On 18 April a double ash layer, ∼400 m deep, is observed just above the morning boundary layer (average and maximum estimated ash optical depth: 0.19 and 0.27). In the afternoon the ash is entrained into the boundary layer, and the latter reaches a depth of ∼1800 m (average and maximum estimated ash optical depth: 0.1 and 0.15). An additional ash layer, with a very small optical depth, was observed on 18 April at an altitude of 3500–4000 m. By converting the lidar optical measurements using estimates of volcanic ash specific extinction, derived from other works, the observations seem to suggest approximate peak ash concentrations of ∼1500 and ∼1000 mg/m3,respectively, on the two observations dates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the sensitivity of the climate system to volcanic aerosol forcing in the third climate configuration of the Met Office Unified Model (HadCM3). The main test case was based on the 1880s when there were several volcanic eruptions, the well-known Krakatau being the largest. These eruptions increased atmospheric aerosol concentrations and induced a period of global cooling surface temperatures. In this study, an ensemble of HadCM3 has been integrated with the standard set of radiative forcings and aerosols from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations, from 1860 to present. A second ensemble removes the volcanic aerosols from 1880 to 1899. The all-forcings ensemble shows an attributable 1.2-Sv (1 Sv ≡ 106 m3 s−1) increase in the Atlantic meridional overturning circulation (AMOC) at 45°N—with a 0.04-PW increase in meridional heat transport at 40°N and increased northern Atlantic SSTs—starting around 1894, approximately 11 years after the first eruption, and lasting a further 10 years at least. The mechanisms responsible are traced to the Arctic, with suppression of the global water cycle (high-latitude precipitation), which leads to an increase in upper-level Arctic and Greenland Sea salinities. This then leads to increased convection in the Greenland–Iceland–Norwegian (GIN) Seas, enhanced Denmark Strait overflows, and AMOC changes with density anomalies traceable southward along the western Atlantic boundary. The authors investigate whether a similar response to the Pinatubo eruption in 1991 could still be ongoing, but do not find strong evidence.