3 resultados para 1007 Nanotechnology

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article provides a brief critique of a recent article on biomineralisation and preservation. It gives a summary of the difference between biomineralisation and mineral replacement, and addresses problems with the interpretation of FT-IR data. The lack of contextual information for the samples studied is another problem which is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discipline now called Solid State Nuclear Track Detection (SSNTD) dates back to 1958 and has its roots in the United Kingdom. Its strength stems chiefly from factors such as its simplicity, small geometry, permanent maintenance of the nuclear record and other diversified applications. A very important field with exciting applications reported recently in conjuction with the nuclear track technique is nanotechnology, which has applications in biology, chemistry, industry, medicare and health, information technology, biotechnology, and metallurgical and chemical technologies. Nanotechnology requires material design followed by the study of the quantum effects for final produced applications in sensors, medical diagnosis, information technology to name a few. We, in this article, present a review of past and present applications of SSNTD suggesting ways to apply the technique in nanotechnology, with special reference to development of nanostructure for applications utilising nanowires, nanofilters and sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Horticultural science linked with basic studies in biology, chemistry, physics and engineering has laid the foundation for advances in applied knowledge which are at the heart of commercial, environmental and social horticulture. In few disciplines is science more rapidly translated into applicable technologies than in the huge range of man’s activities embraced within horticulture which are discussed in this Trilogy. This chapter surveys the origins of horticultural science developing as an integral part of the 16th century “Scientific Revolution”. It identifies early discoveries during the latter part of the 19th and early 20th centuries which rationalized the control of plant growth, flowering and fruiting and the media in which crops could be cultivated. The products of these discoveries formed the basis on which huge current industries of worldwide significance are founded in fruit, vegetable and ornamental production. More recent examples of the application of horticultural science are used in an explanation of how the integration of plant breeding, crop selection and astute marketing highlighted by the New Zealand industry have retained and expanded the viability of production which supplies huge volumes of fruit into the world’s markets. This is followed by an examination of science applied to tissue and cell culture as an example of technologies which have already produced massive industrial applications but hold the prospect for generating even greater advances in the future. Finally, examples are given of nascent scientific discoveries which hold the prospect for generating horticultural industries with considerable future impact. These include systems modeling and biology, nanotechnology, robotics, automation and electronics, genetics and plant breeding, and more efficient and effective use of resources and the employment of benign microbes. In conclusion there is an estimation of the value of horticultural science to society.