5 resultados para , Luso-Asian art
em CentAUR: Central Archive University of Reading - UK
Resumo:
The vagaries of South Asian summer monsoon rainfall on short and long timescales impact the lives of more than one billion people. Understanding how the monsoon will change in the face of global warming is a challenge for climate science, not least because our state-of-the-art general circulation models still have difficulty simulating the regional distribution of monsoon rainfall. However, we are beginning to understand more about processes driving the monsoon, its seasonal cycle and modes of variability. This gives us the hope that we can build better models and ultimately reduce the uncertainty in our projections of future monsoon rainfall.
Resumo:
As one of the most important geological events in Cenozoic era, the uplift of the Tibetan Plateau (TP) has had profound influences on the Asian and global climate and environment evolution. During the past four decades, many scholars from China and abroad have studied climatic and environmental effects of the TP uplift by using a variety of geological records and paleoclimate numerical simulations. The existing research results enrich our understanding of the mechanisms of Asian monsoon changes and interior aridification, but so far there are still a lot of issues that need to be thought deeply and investigated further. This paper attempts to review the research on the influence of the TP uplift on the Asian monsoon-arid environment, summarize three types of numerical simulations including bulk-plateau uplift, phased uplift and sub-regional uplift, and especially to analyze regional differences in responses of climate and environment to different forms of tectonic uplifts. From previous modeling results, the land-sea distribution and the Himalayan uplift may have a large effect in the establishment and development of the South Asian monsoon. However, the formation and evolution of the monsoon in northern East Asia, the intensified dryness north of the TP and enhanced Asian dust cycle may be more closely related to the uplift of the main body, especially the northern part of the TP. In this review, we also discuss relative roles of the TP uplift and other impact factors, origins of the South Asian monsoon and East Asian monsoon, feedback effects and nonlinear responses of climatic and environmental changes to the plateau uplift. Finally, we make comparisons between numerical simulations and geological records, discuss their uncertainties, and highlight some problems worthy of further studying.
Resumo:
In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) has been used to investigate the impacts of regional anthropogenic sulphur dioxide emissions on boreal summer Sahel rainfall. The study focuses on the transient response of the West African monsoon (WAM) to a sudden change in regional anthropogenic sulphur dioxide emissions, including land surface feedbacks, but without sea surface temperature (SST) feedbacks. The response occurs in two distinct phases: 1) fast adjustment of the atmosphere on a time scale of days to weeks (up to 3 weeks) through aerosol-radiation and aerosol-cloud interactions with weak hydrological cycle changes and surface feedbacks. 2) adjustment of the atmosphere and land surface with significant local hydrological cycle changes and changes in atmospheric circulation (beyond 3 weeks). European emissions lead to an increase in shortwave (SW) scattering by increased sulphate burden, leading to a decrease in surface downward SW radiation which causes surface cooling over North Africa, a weakening of the Saharan heat low and WAM, and a decrease in Sahel precipitation. In contrast, Asian emissions lead to very little change in sulphate burden over North Africa, but they induce an adjustment of the Walker Circulation which leads again to a weakening of the WAM and a decrease in Sahel precipitation. The responses to European and Asian emissions during the second phase exhibit similar large scale patterns of anomalous atmospheric circulation and hydrological variables, suggesting a preferred response. The results support the idea that sulphate aerosol emissions contributed to the observed decline in Sahel precipitation in the second half of the twentieth century.
Resumo:
The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world’s population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200 to 40 km at the equator (N96 to N512, 1.9 to 0.35◦). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution related processes cause these changes we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.
Resumo:
In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) that includes earth system components such as interactive chemistry and eight species of tropospheric aerosols considering aerosol direct, indirect, and semi-direct effects, has been used to investigate the impacts of local and non-local emissions of anthropogenic sulphur dioxide on the East Asian summer monsoon (EASM). The study focuses on the fast responses (including land surface feedbacks, but without sea surface temperature feedbacks) to sudden changes in emissions from Asia and Europe. The initial responses, over days 1–40, to Asian and European emissions show large differences. The response to Asian emissions involves a direct impact on the sulphate burden over Asia, with immediate consequences for the shortwave energy budget through aerosol–radiation and aerosol–cloud interactions. These changes lead to cooling of East Asia and a weakening of the EASM. In contrast, European emissions have no significant impact on the sulphate burden over Asia, but they induce mid-tropospheric cooling and drying over the European sector. Subsequently, however, this cold and dry anomaly is advected into Asia, where it induces atmospheric and surface feedbacks over Asia and the Western North Pacific (WNP), which also weaken the EASM. In spite of very different perturbations to the local aerosol burden in response to Asian and European sulphur dioxide emissions, the large scale pattern of changes in land–sea thermal contrast, atmospheric circulation and local precipitation over East Asia from days 40 onward exhibits similar structures, indicating a preferred response, and suggesting that emissions from both regions likely contributed to the observed weakening of the EASM. Cooling and drying of the troposphere over Asia, together with warming and moistening over the WNP, reduces the land–sea thermal contrast between the Asian continent and surrounding oceans. This leads to high sea level pressure (SLP) anomalies over Asia and low SLP anomalies over the WNP, associated with a weakened EASM. In response to emissions from both regions warming and moistening over the WNP plays an important role and determines the time scale of the response.