3 resultados para (MG,FE)O
em CentAUR: Central Archive University of Reading - UK
Resumo:
A set of free-drift experiments was undertaken to synthesize carbonates of mixed cation content (Fe, Ca, Mg) from solution at 25 and 70 degrees C to better understand the relationship between the mineralogy and composition of these phases and the solutions from which they precipitate. Metastable solid solutions formed at 25 degrees C which are not predicted from the extrapolation of higher temperature equilibrium assemblages; instead, solids formed that were intermediary in chemical composition to known magnesite-siderite and dolomite solid solutions. A calcite-siderite solid solution precipitated at 25 degrees C, with the percentage of CaCO3 in the solid being proportional to the aqueous Ca/Fe ratio of the solution, while Mg was excluded from the crystal structure except at relatively high aqueous Mg/Ca and Mg/Fe ratios and a low Ca content. Alternatively, at 70 degrees C Mg was the predominant cation of the solid solutions. These results are compatible with the hypothesis that the relative dehydration energies of Fe, Ca and Mg play an important role in the formation of mixed cation carbonates in nature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pregnant rats were given control (46 mg iron/kg, 61 mg zinc/kg), low-Zn (6.9 mg Zn/kg) or low-Zn plus Fe (168 mg Fe/kg) diets from day 1 of pregnancy. The animals were allowed to give birth and parturition times recorded. Exactly 24 h after the end of parturition the pups were killed and analysed for water, fat, protein, Fe and Zn contents and the mothers' haemoglobin (Hb) and packed cell volume (PCV) were measured. There were no differences in weight gain or food intakes throughout pregnancy. Parturition times were similar (mean time 123 (SE 15) min) and there were no differences in the number of pups born. Protein, water and fat contents of the pups were similar but the low-Zn Fe-supplemented group had higher pup Fe than the low-Zn unsupplemented group, and the control group had higher pup Zn than both the low-Zn groups. The low-Zn groups had a greater incidence of haemorrhaged or deformed pups, or both, than the controls. Pregnant rats were given diets of adequate Zn level (40 mg/kg) but with varying Fe:Zn (0.8, 1.7, 2.9, 3.7). Zn retention from the diet was measured using 65Zn as an extrinsic label on days 3, 10 and 17 of pregnancy with a whole-body gamma-counter. A group of non-pregnant rats was also included as controls. The 65Zn content of mothers and pups was measured 24-48 h after birth and at 14, 21 and 24 d of age. In all groups Zn retention was highest from the first meal, fell in the second meal and then rose in the third meal of the pregnant but not the non-pregnant rats. There were no differences between the groups given diets of varying Fe:Zn level. Approximately 25% of the 65Zn was transferred from the mothers to the pups by the time they were 48 h old, and a further 17% during the first 14 d of lactation. The pup 65Zn content did not significantly increase after the first 20 d of lactation but the maternal 65Zn level continued to fall gradually.
Resumo:
The soluble metal sulphate salts melanterite, rozenite, rhomboclase, szornolnokite, copiapite, coquimbite, hexahydrite and halotrichite, together with gypsum, have been identified, some for the first time oil the banks of the Rio Tinto, SW Spain. Secondary Fe-sulphate minerals call form directly from evaporating acid, sulphate-rich Solutions as a result of pyrite oxidation. Chemical analyses of mixtures of these salt minerals indicate concentrations of Fe (up to 31 wt.%), Mg (up to 4 wt.%), Cu (up to 2 wt.%) and Zn (up to wt.%). These minerals are shown to act as transient storage Cor metals and can store on average up to 10% (9.5 - 11%) and 22% (20-23%) Zn and Cu respectively, of the total discharge of the Rio Tinto during the summer period. Melanterite and rozenite precipitates at Rio Tinto are only found in association with very acidic drainage waters (pH <1.0) draining directly from pyritic waste piles. Copiapite precipitates abundantly oil the banks of the Rio Tinto by (1) direct evaporation of the river water; or (2) as part of a paragenetic sequence with the inclusion of minor halotrichite, indicating natural dehydration and decomposition. The natural occurrences are comparable with the process of paragenesis from the evaporation of Rio Tinto river water under laboratory experiments resulting in the formation of aluminocopiapite, halotrichite, coquimbite, voltaite and gypsum.