150 resultados para tactile support
Resumo:
Infrared polarization and intensity imagery provide complementary and discriminative information in image understanding and interpretation. In this paper, a novel fusion method is proposed by effectively merging the information with various combination rules. It makes use of both low-frequency and highfrequency images components from support value transform (SVT), and applies fuzzy logic in the combination process. Images (both infrared polarization and intensity images) to be fused are firstly decomposed into low-frequency component images and support value image sequences by the SVT. Then the low-frequency component images are combined using a fuzzy combination rule blending three sub-combination methods of (1) region feature maximum, (2) region feature weighting average, and (3) pixel value maximum; and the support value image sequences are merged using a fuzzy combination rule fusing two sub-combination methods of (1) pixel energy maximum and (2) region feature weighting. With the variables of two newly defined features, i.e. the low-frequency difference feature for low-frequency component images and the support-value difference feature for support value image sequences, trapezoidal membership functions are proposed and developed in tuning the fuzzy fusion process. Finally the fused image is obtained by inverse SVT operations. Experimental results of visual inspection and quantitative evaluation both indicate the superiority of the proposed method to its counterparts in image fusion of infrared polarization and intensity images.
Resumo:
This paper details an investigation into sensory substitution by means of direct electrical stimulation of the tongue for the purpose of information input to the human brain. In particular, a device has been constructed and a series of trials have been performed in order to demonstrate the efficacy and performance of an electro-tactile array mounted onto the tongue surface for the purpose of sensory augmentation. Tests have shown that by using a low resolution array a computer-human feedback loop can be successfully implemented by humans in order to complete tasks such as object tracking, surface shape identification and shape recognition with no training or prior experience with the device. Comparisons of this technique have been made with visual alternatives and these show that the tongue based tactile array can match such methods in convenience and accuracy in performing simple tasks.
Resumo:
Agriculture and food security are key sectors for intervention under climate change. Agricultural production is highly vulnerable even to 2C (low-end) predictions for global mean temperatures in 2100, with major implications for rural poverty and for both rural and urban food security. Agriculture also presents untapped opportunities for mitigation, given the large land area under crops and rangeland, and the additional mitigation potential of aquaculture. This paper presents a summary of current knowledge on options to support farmers, particularly smallholder farmers, in achieving food security through agriculture under climate change. Actions towards adaptation fall into two broad overlapping areas: (1) accelerated adaptation to progressive climate change over decadal time scales, for example integrated packages of technology, agronomy and policy options for farmers and food systems, and (2) better management of agricultural risks associated with increasing climate variability and extreme events, for example improved climate information services and safety nets. Maximization of agriculture’s mitigation potential will require investments in technological innovation and agricultural intensification linked to increased efficiency of inputs, and creation of incentives and monitoring systems that are inclusive of smallholder farmers. Food systems faced with climate change need urgent, broad-based action in spite of uncertainties.
Resumo:
An appraisal task involves the rendering of market value, an unobservable and hypothetical construct. Direct feedback against this objective is typically not possible, so alternative feedback such as confirmation of previous appraised values may be employed. This may alter the appraiser’s perception of the valuation objective leading to divergence from the appraisal normative model. The real estate literature suggests appraisers have been susceptible to the influence of previous appraised values, often resulting in biased valuations. This research focuses on the efficacy of a decision support tool in eliminating or subduing this bias in the appraisal process.
Resumo:
Mycoplasma gallisepticum (MG) is a bacterium that causes respiratory disease in chickens, leading to reduced egg production. A dynamic simulation model was developed that can be used to assess the costs and benefits of control using antimicrobials or vaccination in caged or free range systems. The intended users are veterinarians and egg producers. A user interface is provided for input of flock specific parameters. The economic consequence of an MG outbreak is expressed as a reduction in expected egg output. The model predicts that either vaccination or microbial treatment can approximately halve potential losses from MG in some circumstances. Sensitivity analysis is used to test assumptions about infection rate and timing of an outbreak. Feedback from veterinarians points to the value of the model as a discussion tool with producers.
Resumo:
Most developers of behavior change support systems (BCSS) employ ad hoc procedures in their designs. This paper presents a novel discussion concerning how analyzing the relationship between attitude toward target behavior, current behavior, and attitude toward change or maintaining behavior can facilitate the design of BCSS. We describe the three-dimensional relationships between attitude and behavior (3D-RAB) model and demonstrate how it can be used to categorize users, based on variations in levels of cognitive dissonance. The proposed model seeks to provide a method for analyzing the user context on the persuasive systems design model, and it is evaluated using existing BCSS. We identified that although designers seem to address the various cognitive states, this is not done purposefully, or in a methodical fashion, which implies that many existing applications are targeting users not considered at the design phase. As a result of this work, it is suggested that designers apply the 3D-RAB model in order to design solutions for targeted users.
Resumo:
In order to enhance the quality of care, healthcare organisations are increasingly resorting to clinical decision support systems (CDSSs), which provide physicians with appropriate health care decisions or recommendations. However, how to explicitly represent the diverse vague medical knowledge and effectively reason in the decision-making process are still problems we are confronted. In this paper, we incorporate semiotics into fuzzy logic to enhance CDSSs with the aim of providing both the abilities of describing medical domain concepts contextually and reasoning with vague knowledge. A semiotically inspired fuzzy CDSSs framework is presented, based on which the vague knowledge representation and reasoning process are demonstrated.
Resumo:
The May 2014 European Parliament (EP) elections were characterised by the success of far-right Eurosceptic parties, including the French Front National, UKIP, the Danish People’s Party, the Hungarian Jobbik, the Austrian FPÖ, the True Finns and the Greek Golden Dawn. However, a closer look at the results across Europe indicates that the success of far-right parties in the EP elections is neither a linear nor a clear-cut phenomenon: (1) the far right actually declined in many European countries compared to the 2009 results; (2) some of the countries that have experienced the worst of the economic crisis, including Spain, Portugal and Ireland, did not experience a significant rise in far-right party support; and (3) ‘far right’ is too broad an umbrella term, covering parties that are too different from each other to be grouped in one single party family.
Resumo:
Electricity load shifting is becoming a big topic in the world of ‘green’ retail. Marks & Spencer (M&S) aim to become the world’s most sustainable retailer (1) and part of that commitment means contributing to the future electricity network. While intelligent operation of fridges and Heating, Ventilation and Air Conditioning (HVAC) systems are a wide area of research, standby generators should be considered too, as they are the most widely adopted form of distributed generation. In this paper, the experience of using standby generators in Northern Ireland to support the grid is shared and the logistics of future projects are discussed. Interactions with maintenance schedules, electricity costs, grid code, staffing and store opening times are discussed as well as the financial implications associated with running generators for grid support.
Resumo:
Integrating renewable energy into built environments requires additional attention to the balancing of supply and demand due to their intermittent nature. Demand Side Response (DSR) has the potential to make money for organisations as well as support the System Operator as the generation mix changes. There is an opportunity to increase the use of existing technologies in order to manage demand. Company-owned standby generators are a rarely used resource; their maintenance schedule often accounts for a majority of their running hours. DSR encompasses a range of technologies and organisations; Sustainability First (2012) suggest that the System Operator (SO), energy supply companies, Distribution Network Operators (DNOs), Aggregators and Customers all stand to benefit from DSR. It is therefore important to consider impact of DSR measures to each of these stakeholders. This paper assesses the financial implications of organisations using existing standby generation equipment for DSR in order to avoid peak electricity charges. It concludes that under the current GB electricity pricing structure, there are several regions where running diesel generators at peak times is financially beneficial to organisations. Issues such as fuel costs, Carbon Reduction Commitment (CRC) charges, maintenance costs and electricity prices are discussed.
Resumo:
There are three key components for developing a metadata system: a container structure laying out the key semantic issues of interest and their relationships; an extensible controlled vocabulary providing possible content; and tools to create and manipulate that content. While metadata systems must allow users to enter their own information, the use of a controlled vocabulary both imposes consistency of definition and ensures comparability of the objects described. Here we describe the controlled vocabulary (CV) and metadata creation tool built by the METAFOR project for use in the context of describing the climate models, simulations and experiments of the fifth Coupled Model Intercomparison Project (CMIP5). The CV and resulting tool chain introduced here is designed for extensibility and reuse and should find applicability in many more projects.
Resumo:
Wernicke’s aphasia occurs following a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke’s aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used fMRI to investigate the neural basis of written word and picture semantic processing in Wernicke’s aphasia, with the wider aim of examining how the semantic system is altered following damage to the classical comprehension regions. Twelve participants with Wernicke’s aphasia and twelve control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and ROI analysis in Wernicke’s aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke’s aphasia group displayed an “over-activation” in comparison to control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke’s aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results concord with models which indicate that the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.
Resumo:
Population modelling is increasingly recognised as a useful tool for pesticide risk assessment. For vertebrates that may ingest pesticides with their food, such as woodpigeon (Columba palumbus), population models that simulate foraging behaviour explicitly can help predicting both exposure and population-level impact. Optimal foraging theory is often assumed to explain the individual-level decisions driving distributions of individuals in the field, but it may not adequately predict spatial and temporal characteristics of woodpigeon foraging because of the woodpigeons’ excellent memory, ability to fly long distances, and distinctive flocking behaviour. Here we present an individual-based model (IBM) of the woodpigeon. We used the model to predict distributions of foraging woodpigeons that use one of six alternative foraging strategies: optimal foraging, memory-based foraging and random foraging, each with or without flocking mechanisms. We used pattern-oriented modelling to determine which of the foraging strategies is best able to reproduce observed data patterns. Data used for model evaluation were gathered during a long-term woodpigeon study conducted between 1961 and 2004 and a radiotracking study conducted in 2003 and 2004, both in the UK, and are summarised here as three complex patterns: the distributions of foraging birds between vegetation types during the year, the number of fields visited daily by individuals, and the proportion of fields revisited by them on subsequent days. The model with a memory-based foraging strategy and a flocking mechanism was the only one to reproduce these three data patterns, and the optimal foraging model produced poor matches to all of them. The random foraging strategy reproduced two of the three patterns but was not able to guarantee population persistence. We conclude that with the memory-based foraging strategy including a flocking mechanism our model is realistic enough to estimate the potential exposure of woodpigeons to pesticides. We discuss how exposure can be linked to our model, and how the model could be used for risk assessment of pesticides, for example predicting exposure and effects in heterogeneous landscapes planted seasonally with a variety of crops, while accounting for differences in land use between landscapes.
Resumo:
The aim of this paper is to develop a comprehensive taxonomy of green supply chain management (GSCM) practices and develop a structural equation modelling-driven decision support system following GSCM taxonomy for managers to provide better understanding of the complex relationship between the external and internal factors and GSCM operational practices. Typology and/or taxonomy play a key role in the development of social science theories. The current taxonomies focus on a single or limited component of the supply chain. Furthermore, they have not been tested using different sample compositions and contexts, yet replication is a prerequisite for developing robust concepts and theories. In this paper, we empirically replicate one such taxonomy extending the original study by (a) developing broad (containing the key components of supply chain) taxonomy; (b) broadening the sample by including a wider range of sectors and organisational size; and (c) broadening the geographic scope of the previous studies. Moreover, we include both objective measures and subjective attitudinal measurements. We use a robust two-stage cluster analysis to develop our GSCM taxonomy. The main finding validates the taxonomy previously proposed and identifies size, attitude and level of environmental risk and impact as key mediators between internal drivers, external drivers and GSCM operational practices.
Resumo:
We report on the first realtime ionospheric predictions network and its capabilities to ingest a global database and forecast F-layer characteristics and "in situ" electron densities along the track of an orbiting spacecraft. A global network of ionosonde stations reported around-the-clock observations of F-region heights and densities, and an on-line library of models provided forecasting capabilities. Each model was tested against the incoming data; relative accuracies were intercompared to determine the best overall fit to the prevailing conditions; and the best-fit model was used to predict ionospheric conditions on an orbit-to-orbit basis for the 12-hour period following a twice-daily model test and validation procedure. It was found that the best-fit model often provided averaged (i.e., climatologically-based) accuracies better than 5% in predicting the heights and critical frequencies of the F-region peaks in the latitudinal domain of the TSS-1R flight path. There was a sharp contrast however, in model-measurement comparisons involving predictions of actual, unaveraged, along-track densities at the 295 km orbital altitude of TSS-1R In this case, extrema in the first-principle models varied by as much as an order of magnitude in density predictions, and the best-fit models were found to disagree with the "in situ" observations of Ne by as much as 140%. The discrepancies are interpreted as a manifestation of difficulties in accurately and self-consistently modeling the external controls of solar and magnetospheric inputs and the spatial and temporal variabilities in electric fields, thermospheric winds, plasmaspheric fluxes, and chemistry.