171 resultados para on-ice


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The region of sea ice near the edge of the sea ice pack is known as the marginal ice zone (MIZ), and its dynamics are complicated by ocean wave interaction with the ice cover, strong gradients in the atmosphere and ocean and variations in sea ice rheology. This paper focuses on the role of sea ice rheology in determining the dynamics of the MIZ. Here, sea ice is treated as a granular material with a composite rheology describing collisional ice floe interaction and plastic interaction. The collisional component of sea ice rheology depends upon the granular temperature, a measure of the kinetic energy of flow fluctuations. A simplified model of the MIZ is introduced consisting of the along and across momentum balance of the sea ice and the balance equation of fluctuation kinetic energy. The steady solution of these equations is found to leading order using elementary methods. This reveals a concentrated region of rapid ice flow parallel to the ice edge, which is in accordance with field observations, and previously called the ice jet. Previous explanations of the ice jet relied upon the existence of ocean currents beneath the ice cover. We show that an ice jet results as a natural consequence of the granular nature of sea ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mixing of floes of different thickness caused by repeated deformation of the ice cover is modeled as diffusion, and the mass balance equation for sea ice accounting for mass diffusion is developed. The effect of deformational diffusion on the ice thickness balance is shown to reach 1% of the divergence effect, which describes ridging and lead formation. This means that with the same accuracy the mass balance equation can be written in terms of mean velocity rather than mean mass-weighted velocity, which one should correctly use for a multicomponent fluid such as sea ice with components identified by floe thickness. Mixing (diffusion) of sea ice also occurs because of turbulent variations in wind and ocean drags that are unresolved in models. Estimates of the importance of turbulent mass diffusion on the dynamic redistribution of ice thickness are determined using empirical data for the turbulent diffusivity. For long-time-scale prediction (≫5 days), where unresolved atmospheric motion may have a length scale on the order of the Arctic basin and the time scale is larger than the synoptic time scale of atmospheric events, turbulent mass diffusion can exceed 10% of the divergence effect. However, for short-time-scale prediction, for example, 5 days, the unresolved scales are on the order of 100 km, and turbulent diffusion is about 0.1% of the divergence effect. Because inertial effects are small in the dynamics of the sea ice pack, diffusive momentum transfer can be disregarded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In winter, brine rejection from sea ice formation and export in the Weddell Sea, offshore of Filchner-Ronne Ice Shelf (FRIS), leads to the formation of High Salinity Shelf Water (HSSW). This dense water mass enters the cavity beneath FRIS by sinking southward down the sloping continental shelf towards the grounding line. Melting occurs when the HSSW encounters the ice shelf, and the meltwater released cools and freshens the HSSW to form a water mass known as Ice Shelf Water (ISW). If this ISW rises, the ‘ice pump’ is initiated (Lewis and Perkin, 1986), whereby the ascending ISW becomes supercooled and deposits marine ice at shallower locations due to the pressure increase in the in-situ freezing temperature. Sandh¨ager et al. (2004) were able to infer the thickness patterns of marine ice deposits at the base of FRIS (figure 1), so the primary aim of this work is to try to understand the ocean flows that determine these patterns. The plume model we use to investigate ISW flow is described fully by Holland and Feltham (accepted) so only a relatively brief outline is presented here. The plume is simulated by combining a parameterisation of ice shelf basal interaction and a multiplesize- class frazil dynamics model with an unsteady, depth-averaged reduced-gravity plume model. In the model an active region of ISW evolves above and within an expanse of stagnant ambient fluid, which is considered to be ice-free and has fixed profiles of temperature and salinity. The two main assumptions of the model are that there is a well-mixed layer underneath the ice shelf and that the ambient fluid outside the plume is stagnant with fixed properties. The topography of the ice shelf that the plume flows beneath is set to the FRIS ice shelf draft calculated by Sandh¨ager et al. (2004) masked with the grounding line from the Antarctic Digital Database (ADD Consortium, 2002). To initiate the plumes, we assume that the intrusion of dense HSSW initially causes melting at the points on the grounding line where the glaciological tributaries feeding FRIS go afloat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Preliminary results are presented from a modelling study directed at the spatial variation of frazil ice formation and its effects on flow underneath large ice shelves. The chosen plume and frazil models are briefly introduced, and results from two simplified cases are outlined. It is found that growth and melting dominate the frazil model in the short term. Secondary nucleation converts larger crystals into several nuclei due to crystal collisions (microattrition) and fluid shear and therefore governs the ice crystal dynamics after the initial supercooling has been quenched. Frazil formation is found to have a significant depth-dependence in an idealised study of an Ice Shelf Water plume. Finally, plans for more extensive and realistic studies are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish the first inter-model comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea-ice extent and volume, there is potential predictive skill for lead times of up to three years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea-ice concentration errors are largest in the marginal ice zone, and in winter they are almost zero away from the ice edge. Sea-ice thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea-ice advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of coupled ocean-atmosphere(-vegetation) simulations using state of the art climate models is now available for the Last Glacial Maximum (LGM) and the Mid-Holocene (MH) through the second phase of the Paleoclimate Modeling Intercomparison Project (PMIP2). Here we quantify the latitudinal shift of the location of the Intertropical Convergence Zone (ITCZ) in the tropical regions during boreal summer and the change in precipitation in the northern part of the ITCZ. For both periods the shift is more pronounced over the continents and East Asia. The maritime continent is the region where the largest spread is found between models. We also clearly establish that the larger the increase in the meridional temperature gradient in the tropical Atlantic during summer at the MH, the larger the change in precipitation over West Africa. The vegetation feedback is however not as large as found in previous studies, probably due to model differences in the control simulation. Finally, we show that the feedback from snow and sea-ice at mid and high latitudes contributes for half of the cooling in the Northern Hemisphere for the LGM, with the remaining being achieved by the reduced CO2 and water vapour in the atmosphere. For the MH the snow and albedo feedbacks strengthen the spring cooling and enhance the boreal summer warming, whereas water vapour reinforces the late summer warming. These feedbacks are modest in the Southern Hemisphere. For the LGM most of the surface cooling is due to CO2 and water vapour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During glacial periods, dust deposition rates and inferred atmospheric concentrations were globally much higher than present. According to recent model results, the large enhancement of atmospheric dust content at the last glacial maximum (LGM) can be explained only if increases in the potential dust source areas are taken into account. Such increases are to be expected, due to effects of low precipitation and low atmospheric (CO2) on plant growth. Here the modelled three-dimensional dust fields from Mahowald et al. and modelled seasonally varying surface-albedo fields derived in a parallel manner, are used to quantify the mean radiative forcing due to modern (non-anthropogenic) and LGM dust. The effect of mineralogical provenance on the radiative properties of the dust is taken into account, as is the range of optical properties associated with uncertainties about the mixing state of the dust particles. The high-latitude (poleward of 45°) mean change in forcing (LGM minus modern) is estimated to be small (–0.9 to +0.2 W m–2), especially when compared to nearly –20 W m–2 due to reflection from the extended ice sheets. Although the net effect of dust over ice sheets is a positive forcing (warming), much of the simulated high-latitude dust was not over the ice sheets, but over unglaciated regions close to the expanded dust source region in central Asia. In the tropics the change in forcing is estimated to be overall negative, and of similarly large magnitude (–2.2 to –3.2 W m–2) to the radiative cooling effect of low atmospheric (CO2). Thus, the largest long-term climatic effect of the LGM dust is likely to have been a cooling of the tropics. Low tropical sea-surface temperatures, low atmospheric (CO2) and high atmospheric dust loading may be mutually reinforcing due to multiple positive feedbacks, including the negative radiative forcing effect of dust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Antarctic Peninsula region is currently undergoing rapid environmental change, resulting in the thinning, acceleration and recession of glaciers and the sequential collapse of ice shelves. It is important to view these changes in the context of long-term palaeoenvironmental complexity and to understand the key processes controlling ice sheet growth and recession. In addition, numerical ice sheet models require detailed geological data for tuning and testing. Therefore, this paper systematically and holistically reviews published geological evidence for Antarctic Peninsula Ice Sheet variability for each key locality throughout the Cenozoic, and brings together the prevailing consensus of the extent, character and behaviour of the glaciations of the Antarctic Peninsula region. Major contributions include a downloadable database of 186 terrestrial and marine calibrated dates; an original reconstruction of the LGM ice sheet; and a new series of isochrones detailing ice sheet retreat following the LGM. Glaciation of Antarctica was initiated around the Eocene/Oligocene transition in East Antarctica. Palaeogene records of Antarctic Peninsula glaciation are primarily restricted to King George Island, where glacigenic sediments provide a record of early East Antarctic glaciations, but with modification of far-travelled erratics by local South Shetland Island ice caps. Evidence for Neogene glaciation is derived primarily from King George Island and James Ross Island, where glaciovolcanic strata indicate that ice thicknesses reached 500–850 m during glacials. This suggests that the Antarctic Peninsula Ice Sheet draped, rather than drowned, the topography. Marine geophysical investigations indicate multiple ice sheet advances during this time. Seismic profiling of continental shelf-slope deposits indicates up to ten large advances of the Antarctic Peninsula Ice Sheet during the Early Pleistocene, when the ice sheet was dominated by 40 kyr cycles. Glacials became more pronounced, reaching the continental shelf edge, and of longer duration during the Middle Pleistocene. During the Late Pleistocene, repeated glacials reached the shelf edge, but ice shelves inhibited iceberg rafting. The Last Glacial Maximum (LGM) occurred at 18 ka BP, after which transitional glaciomarine sediments on the continental shelf indicate ice-sheet retreat. The continental shelf contains large bathymetric troughs, which were repeatedly occupied by large ice streams during Pleistocene glaciations. Retreat after the LGM was episodic in the Weddell Sea, with multiple readvances and changes in ice-flow direction, but rapid in the Bellingshausen Sea. The late Holocene Epoch was characterised by repeated fluctuations in palaeoenvironmental conditions, with associated glacial readvances. However, this has been subsumed by rapid warming and ice-shelf collapse during the twentieth century.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used Little Ice Age (LIA) trimlines and moraines to assess changes in South American glaciers over the last ∼140 years. We determined the extent and length of 640 glaciers during the LIA (∼ AD 1870) and 626 glaciers (the remainder having entirely disappeared) in 1986, 2001 and 2011. The calculated reduction in glacierized area between the LIA and 2011 is 4131 km2 (15.4%), with 660 km2 (14.2%) being lost from the Northern Patagonia Icefield (NPI), 1643 km2 (11.4%) from the Southern Patagonia Icefield (SPI) and 306 km2 (14.4%) from Cordillera Darwin. Latitude, size and terminal environment (calving or land-terminating) exert the greatest control on rates of shrinkage. Small, northerly, land-terminating glaciers shrank fastest. Annual rates of area loss increased dramatically after 2001 for mountain glaciers north of 52° S and the large icefields, with the NPI and SPI now shrinking at 9.4 km2 a–1 (0.23% a–1) and 20.5 km2 a–1 (0.15% a–1) respectively. The shrinkage of glaciers between 52° S and 54° S accelerated after 1986, and rates of shrinkage from 1986 to 2011 remained steady. Icefield outlet glaciers, isolated glaciers and ice caps south of 54° S shrank faster from 1986 to 2001 than they did from 2001 to 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtually no information is available on the response of land-terminating Antarctic Peninsula glaciers to climate change on a centennial timescale. This paper analyses the topography, geomorphology and sedimentology of prominent moraines on James Ross Island, Antarctica, to determine geometric changes and to interpret glacier behaviour. The moraines are very likely due to a late-Holocene phase of advance and featured (1) shearing and thrusting within the snout, (2) shearing and deformation of basal sediment, (3) more supraglacial debris than at present and (4) short distances of sediment transport. Retreat of ∼100 m and thinning of 15–20 m has produced a loss of 0.1 km3 of ice. The pattern of surface lowering is asymmetric. These geometrical changes are suggested most simply to be due to a net negative mass balance caused by a drier climate. Comparisons of the moraines with the current glaciological surface structure of the glaciers permits speculation of a transition from a polythermal to a cold-based thermal regime. Small land-terminating glaciers in the northern Antarctic Peninsula region could be cooling despite a warming climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineral dust aerosols in the atmosphere have the potential to affect the global climate by influencing the radiative balance of the atmosphere and the supply of micronutrients to the ocean. Ice and marine sediment cores indicate that dust deposition from the atmosphere was at some locations 2–20 times greater during glacial periods, raising the possibility that mineral aerosols might have contributed to climate change on glacial-interglacial time scales. To address this question, we have used linked terrestrial biosphere, dust source, and atmospheric transport models to simulate the dust cycle in the atmosphere for current and last glacial maximum (LGM) climates. We obtain a 2.5-fold higher dust loading in the entire atmosphere and a twenty-fold higher loading in high latitudes, in LGM relative to present. Comparisons to a compilation of atmospheric dust deposition flux estimates for LGM and present in marine sediment and ice cores show that the simulated flux ratios are broadly in agreement with observations; differences suggest where further improvements in the simple dust model could be made. The simulated increase in high-latitude dustiness depends on the expansion of unvegetated areas, especially in the high latitudes and in central Asia, caused by a combination of increased aridity and low atmospheric [CO2]. The existence of these dust source areas at the LGM is supported by pollen data and loess distribution in the northern continents. These results point to a role for vegetation feedbacks, including climate effects and physiological effects of low [CO2], in modulating the atmospheric distribution of dust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The area of Arctic September sea ice has diminished from about 7 million km2 in the 1990s to less than 5 million km2 in five of the past seven years, with a record minimum of 3.6 million km2 in 2012 (ref. 1). The strength of this decrease is greater than expected by the scientific community, the reasons for this are not fully understood, and its simulation is an on-going challenge for existing climate models2, 3. With growing Arctic marine activity there is an urgent demand for forecasting Arctic summer sea ice4. Previous attempts at seasonal forecasts of ice extent were of limited skill5, 6, 7, 8, 9. However, here we show that the Arctic sea-ice minimum can be accurately forecasted from melt-pond area in spring. We find a strong correlation between the spring pond fraction and September sea-ice extent. This is explained by a positive feedback mechanism: more ponds reduce the albedo; a lower albedo causes more melting; more melting increases pond fraction. Our results help explain the acceleration of Arctic sea-ice decrease during the past decade. The inclusion of our new melt-pond model10 promises to improve the skill of future forecast and climate models in Arctic regions and beyond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the winter of 2013/14, much of the UK experienced repeated intense rainfall events and flooding. This had a considerable impact on property and transport infrastructure. A key question is whether the burning of fossil fuels is changing the frequency of extremes, and if so to what extent. We assess the scale of the winter flooding before reviewing a broad range of Earth system drivers affecting UK rainfall. Some drivers can be potentially disregarded for these specific storms whereas others are likely to have increased their risk of occurrence. We discuss the requirements of hydrological models to transform rainfall into river flows and flooding. To determine any general changing flood risk, we argue that accurate modelling needs to capture evolving understanding of UK rainfall interactions with a broad set of factors. This includes changes to multiscale atmospheric, oceanic, solar and sea-ice features, and land-use and demographics. Ensembles of such model simulations may be needed to build probability distributions of extremes for both pre-industrial and contemporary concentration levels of atmospheric greenhouse gases.