198 resultados para moisture flux


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model for predicting the behaviour of membrane distillation by incorporating mass and heat transfer equations has been used to find permeate fluxes, and has been validated experimentally. The model accurately predicts mass and heat transfer. The main work studied the effect of module design using a flat-plate module in laminar flow conditions. Areas of investigation included the use of channels across the membrane surface, decreasing the available membrane surface area, and widening the inlet and outlet channels. The work showed that widening the channels increased the flux. Increased flux was also obtained by the use of channels on the permeate side, though not on the feed side.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An objective identification and ranking of extraordinary rainfall events for Northwest Italy is established using time series of annual precipitation maxima for 1938–2002 at over 200 stations. Rainfall annual maxima are considered for five reference durations (1, 3, 6, 12, and 24 h). In a first step, a day is classified as an extraordinary rainfall day when a regional threshold calculated on the basis of a two-components extreme value distribution is exceeded for at least one of the stations. Second, a clustering procedure taking into account the different rainfall durations is applied to the identified 163 events. Third, a division into six clusters is chosen using Ward's distance criteria. It is found that two of these clusters include the seven strongest events as quantified from a newly developed measure of intensity which combines rainfall intensities and spatial extension. Two other clusters include the weakest 72% historical events. The obtained clusters are analyzed in terms of typical synoptic characteristics. The two top clusters are characterized by strong and persistent upper air troughs inducing not only moisture advection from the North Atlantic into the Western Mediterranean but also strong northward flow towards the southern Alpine ranges. Humidity transports from the North Atlantic are less important for the weaker clusters. We conclude that moisture advection from the North Atlantic plays a relevant role in the magnitude of the extraordinary events over Northwest Italy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution simulations with a mesoscale model are performed to estimate heat and moisture budgets of a well-mixed boundary layer. The model budgets are validated against energy budgets obtained from airborne measurements over heterogeneous terrain in Western Germany. Time rate of change, vertical divergence, and horizontal advection for an atmospheric column of air are estimated. Results show that the time trend of specific humidity exhibits some deficiencies, while the potential temperature trend is matched accurately. Furthermore, the simulated turbulent surface fluxes of sensible and latent heat are comparable to the measured fluxes, leading to similar values of the vertical divergence. The analysis of different horizontal model resolutions exhibits improved surface fluxes with increased resolution, a fact attributed to a reduced aggregation effect. Scale-interaction effects could be identified: while time trends and advection are strongly influenced by mesoscale forcing, the turbulent surface fluxes are mainly controlled by microscale processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a self-consistent drift-kinetic simulation code, we investigate whether electron acceleration owing to shear Alfvén waves in the plasma sheet boundary layer is sufficient to cause auroral brightening in the ionosphere. The free parameters used in the simulation code are guided by in situ observations of wave and plasma parameters in the magnetosphere at distances >4 RE from the Earth. For the perpendicular wavelength used in the study, which maps to ∼4 km at 110 km altitude, there is a clear amplitude threshold which determines whether magnetospheric shear Alfvén waves above the classical auroral acceleration region can excite sufficient electrons to create the aurora. Previous studies reported wave amplitudes that easily exceed this threshold; hence, the results reported in this paper demonstrate that auroral acceleration owing to shear Alfvén waves can occur in the magnetosphere at distances >4 RE from the Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of coupled atmosphere–ocean–ice aquaplanet experiments is described in which topological constraints on ocean circulation are introduced to study the role of ocean circulation on the mean climate of the coupled system. It is imagined that the earth is completely covered by an ocean of uniform depth except for the presence or absence of narrow barriers that extend from the bottom of the ocean to the sea surface. The following four configurations are described: Aqua (no land), Ridge (one barrier extends from pole to pole), Drake (one barrier extends from the North Pole to 35°S), and DDrake (two such barriers are set 90° apart and join at the North Pole, separating the ocean into a large basin and a small basin, connected to the south). On moving from Aqua to Ridge to Drake to DDrake, the energy transports in the equilibrium solutions become increasingly “realistic,” culminating in DDrake, which has an uncanny resemblance to the present climate. Remarkably, the zonal-average climates of Drake and DDrake are strikingly similar, exhibiting almost identical heat and freshwater transports, and meridional overturning circulations. However, Drake and DDrake differ dramatically in their regional climates. The small and large basins of DDrake exhibit distinctive Atlantic-like and Pacific-like characteristics, respectively: the small basin is warmer, saltier, and denser at the surface than the large basin, and is the main site of deep water formation with a deep overturning circulation and strong northward ocean heat transport. A sensitivity experiment with DDrake demonstrates that the salinity contrast between the two basins, and hence the localization of deep convection, results from a deficit of precipitation, rather than an excess of evaporation, over the small basin. It is argued that the width of the small basin relative to the zonal fetch of atmospheric precipitation is the key to understanding this salinity contrast. Finally, it is argued that many gross features of the present climate are consequences of two topological asymmetries that have profound effects on ocean circulation: a meridional asymmetry (circumpolar flow in the Southern Hemisphere; blocked flow in the Northern Hemisphere) and a zonal asymmetry (a small basin and a large basin).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A better understanding of links between the properties of the urban environment and the exchange to the atmosphere is central to a wide range of applications. The numerous measurements of surface energy balance data in urban areas enable intercomparison of observed fluxes from distinct environments. This study analyzes a large database in two new ways. First, instead of normalizing fluxes using net all-wave radiation only the incoming radiative fluxes are used, to remove the surface attributes from the denominator. Second, because data are now available year-round, indices are developed to characterize the fraction of the surface (built; vegetation) actively engaged in energy exchanges. These account for shading patterns within city streets and seasonal changes in vegetation phenology; their impact on the partitioning of the incoming radiation is analyzed. Data from 19 sites in North America, Europe, Africa, and Asia (including 6-yr-long observation campaigns) are used to derive generalized surface–flux relations. The midday-period outgoing radiative fraction decreases with an increasing total active surface index, the stored energy fraction increases with an active built index, and the latent heat fraction increases with an active vegetated index. Parameterizations of these energy exchange ratios as a function of the surface indices [i.e., the Flux Ratio–Active Index Surface Exchange (FRAISE) scheme] are developed. These are used to define four urban zones that characterize energy partitioning on the basis of their active surface indices. An independent evaluation of FRAISE, using three additional sites from the Basel Urban Boundary Layer Experiment (BUBBLE), yields accurate predictions of the midday flux partitioning at each location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large scale urban consumption of energy (LUCY) model simulates all components of anthropogenic heat flux (QF) from the global to individual city scale at 2.5 × 2.5 arc-minute resolution. This includes a database of different working patterns and public holidays, vehicle use and energy consumption in each country. The databases can be edited to include specific diurnal and seasonal vehicle and energy consumption patterns, local holidays and flows of people within a city. If better information about individual cities is available within this (open-source) database, then the accuracy of this model can only improve, to provide the community data from global-scale climate modelling or the individual city scale in the future. The results show that QF varied widely through the year, through the day, between countries and urban areas. An assessment of the heat emissions estimated revealed that they are reasonably close to those produced by a global model and a number of small-scale city models, so results from LUCY can be used with a degree of confidence. From LUCY, the global mean urban QF has a diurnal range of 0.7–3.6 W m−2, and is greater on weekdays than weekends. The heat release from building is the largest contributor (89–96%), to heat emissions globally. Differences between months are greatest in the middle of the day (up to 1 W m−2 at 1 pm). December to February, the coldest months in the Northern Hemisphere, have the highest heat emissions. July and August are at the higher end. The least QF is emitted in May. The highest individual grid cell heat fluxes in urban areas were located in New York (577), Paris (261.5), Tokyo (178), San Francisco (173.6), Vancouver (119) and London (106.7). Copyright © 2010 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An urban energy and water balance model is presented which uses a small number of commonly measured meteorological variables and information about the surface cover. Rates of evaporation-interception for a single layer with multiple surface types (paved, buildings, coniferous trees and/or shrubs, deciduous trees and/or shrubs, irrigated grass, non-irrigated grass and water) are calculated. Below each surface type, except water, there is a single soil layer. At each time step the moisture state of each surface is calculated. Horizontal water movements at the surface and in the soil are incorporated. Particular attention is given to the surface conductance used to model evaporation and its parameters. The model is tested against direct flux measurements carried out over a number of years in Vancouver, Canada and Los Angeles, USA. At all measurement sites the model is able to simulate the net all-wave radiation and turbulent sensible and latent heat well (RMSE = 25–47 W m−2, 30–64 and 20–56 W m−2, respectively). The model reproduces the diurnal cycle of the turbulent fluxes but typically underestimates latent heat flux and overestimates sensible heat flux in the day time. The model tracks measured surface wetness and simulates the variations in soil moisture content. It is able to respond correctly to short-term events as well as annual changes. The largest uncertainty relates to the determination of surface conductance. The model has the potential be used for multiple applications; for example, to predict effects of regulation on urban water use, landscaping and planning scenarios, or to assess climate mitigation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of diurnal variations in sea surface temperature (SST) on the air-sea flux of CO2 over the central Atlantic ocean and Mediterranean Sea (60 S–60 N, 60 W–45 E) is evaluated for 2005–2006. We use high spatial resolution hourly satellite ocean skin temperature data to determine the diurnal warming (ΔSST). The CO2 flux is then computed using three different temperature fields – a foundation temperature (Tf, measured at a depth where there is no diurnal variation), Tf, plus the hourly ΔSST and Tf, plus the monthly average of the ΔSSTs. This is done in conjunction with a physically-based parameterisation for the gas transfer velocity (NOAA-COARE). The differences between the fluxes evaluated for these three different temperature fields quantify the effects of both diurnal warming and diurnal covariations. We find that including diurnal warming increases the CO2 flux out of this region of the Atlantic for 2005–2006 from 9.6 Tg C a−1 to 30.4 Tg C a−1 (hourly ΔSST) and 31.2 Tg C a−1 (monthly average of ΔSST measurements). Diurnal warming in this region, therefore, has a large impact on the annual net CO2 flux but diurnal covariations are negligible. However, in this region of the Atlantic the uptake and outgassing of CO2 is approximately balanced over the annual cycle, so although we find diurnal warming has a very large effect here, the Atlantic as a whole is a very strong carbon sink (e.g. −920 Tg C a−1 Takahashi et al., 2002) making this is a small contribution to the Atlantic carbon budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How people live, work, move from place to place, consume and the technologies they use all affect heat emissions in a city which influences urban weather and climate. Here we document changes to a global anthropogenic heat flux (QF) model to enhance its spatial (30′′ × 30′′ to 0.5° × 0.5°) resolution and temporal coverage (historical, current and future). QF is estimated across Europe (1995–2015), considering changes in temperature, population and energy use. While on average QF is small (of the order 1.9–4.6 W m−2 across all the urban areas of Europe), significant spatial variability is documented (maximum 185 W m−2). Changes in energy consumption due to changes in climate are predicted to cause a 13% (11%) increase in QF on summer (winter) weekdays. The largest impact results from changes in temperature conditions which influences building energy use; for winter, with the coldest February on record, the mean flux for urban areas of Europe is 4.56 W m−2 and for summer (warmest July on record) is 2.23 W m−2. Detailed results from London highlight the spatial resolution used to model the QF is critical and must be appropriate for the application at hand, whether scientific understanding or decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historic geomagnetic activity observations have been used to reveal centennial variations in the open solar flux and the near-Earth heliospheric conditions (the interplanetary magnetic field and the solar wind speed). The various methods are in very good agreement for the past 135 years when there were sufficient reliable magnetic observatories in operation to eliminate problems due to site-specific errors and calibration drifts. This review underlines the physical principles that allow these reconstructions to be made, as well as the details of the various algorithms employed and the results obtained. Discussion is included of: the importance of the averaging timescale; the key differences between “range” and “interdiurnal variability” geomagnetic data; the need to distinguish source field sector structure from heliospherically-imposed field structure; the importance of ensuring that regressions used are statistically robust; and uncertainty analysis. The reconstructions are exceedingly useful as they provide calibration between the in-situ spacecraft measurements from the past five decades and the millennial records of heliospheric behaviour deduced from measured abundances of cosmogenic radionuclides found in terrestrial reservoirs. Continuity of open solar flux, using sunspot number to quantify the emergence rate, is the basis of a number of models that have been very successful in reproducing the variation derived from geomagnetic activity. These models allow us to extend the reconstructions back to before the development of the magnetometer and to cover the Maunder minimum. Allied to the radionuclide data, the models are revealing much about how the Sun and heliosphere behaved outside of grand solar maxima and are providing a means of predicting how solar activity is likely to evolve now that the recent grand maximum (that had prevailed throughout the space age) has come to an end.