124 resultados para ensembles of artificial neural networks
Resumo:
Cerebral palsy (CP) includes a broad range of disorders, which can result in impairment of posture and movement control. Brain-computer interfaces (BCIs) have been proposed as assistive devices for individuals with CP. Better understanding of the neural processing underlying motor control in affected individuals could lead to more targeted BCI rehabilitation and treatment options. We have explored well-known neural correlates of movement, including event-related desynchronization (ERD), phase synchrony, and a recently-introduced measure of phase dynamics, in participants with CP and healthy control participants. Although present, significantly less ERD and phase locking were found in the group with CP. Additionally, inter-group differences in phase dynamics were also significant. Taken together these findings suggest that users with CP exhibit lower levels of motor cortex activation during motor imagery, as reflected in lower levels of ongoing mu suppression and less functional connectivity. These differences indicate that development of BCIs for individuals with CP may pose additional challenges beyond those faced in providing BCIs to healthy individuals.
Resumo:
Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks – homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs.
Resumo:
Lowland heath is an internationally important habitat type that has greatly declined in abundance throughout Western Europe. In recent years this has led to a growing interest in the restoration of heathland on agricultural land. This generally requires the use of chemical treatments to return soil chemical conditions to those appropriate for the support of heathland ecosystems. However, the potential for negative impacts on the environment due to the potential of these treatments to increase the availability of trace metals via raised soil acidity requires investigation. A large-scale field study investigated the effect of two chemical treatments used in heathland restoration, elemental sulphur and ferrous sulphate, on soil acidity and whether it is possible to predict the effect of the treatments on availability of two potentially toxic cations (Al and Cd) in the soil along with their subsequent accumulation in the shoots of the grass Agrostis capillaris. Results showed that both treatments decreased soil pH, but that only elemental sulphur produced a pH similar to heathland soil. The availability of Al, measured by extraction with 1 M ammonium nitrate, could not be predicted by soil pH, depth in the soil and total Al concentration in the soil. By contrast, availability of Cd could be predicted from these three variables. Concentrations of both Al and Cd in the shoots of A. capillaris showed no significant relationship with the extractable concentration in the soil. Results are discussed in light of the possible environmental impacts of the chemical restoration techniques.