143 resultados para desiccation-sensitivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: We have reported that adverse effects on flow-mediated dilation of an acute elevation of non-esterified fatty acids rich in saturated fat (SFA) are reversed following addition of long-chain (LC) n-3 polyunsaturated fatty acids (PUFA), and hypothesised that these effects may be mediated through alterations in insulin signalling pathways. In a subgroup, we explored the effects of raised NEFA enriched with SFA, with or without LC n-3 PUFA, on whole body insulin sensitivity (SI) and responsiveness of the endothelium to insulin infusion. Methods and Results: Thirty adults (mean age 27.8 y, BMI 23.2 kg/m2) consumed oral fat loads on separate occasions with continuous heparin infusion to elevate NEFA between 60-390 min. For the final 150 min, a hyperinsulinaemic-euglycaemic clamp was performed, whilst FMD and circulating markers of endothelial function were measured at baseline, pre-clamp (240 min) and post-clamp (390 min). NEFA elevation during the SFA-rich drinks was associated with impaired FMD (P=0.027) whilst SFA+LC n-3 PUFA improved FMD at 240 min (P=0.003). In males, insulin infusion attenuated the increase in FMD with SFA+LC n-3 PUFA (P=0.049), with SI 10% greater with SFA+LC n-3 PUFA than SFA (P=0.041). Conclusion: This study provides evidence that NEFA composition during acute elevation influences both FMD and SI, with some indication of a difference by gender. However our findings are not consistent with the hypothesis that the effects of fatty acids on endothelial function and SI operate through a common pathway. Trial registered at clinicaltrials.gov, NCT01351324.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and climate interact. One example is our inability to provide robust assessments of future global and regional climate changes. However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible to fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scientific questions that have become tractable as a result of recent advances. We propose four such questions below; they involve understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the strength and the variability of the tropical rain belts and the extratropical storm tracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10–5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCMl, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100–200 km north in most sectors. Both CCMl and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world’s population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200 to 40 km at the equator (N96 to N512, 1.9 to 0.35◦). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution related processes cause these changes we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Do philosophers use intuitions? Should philosophers use intuitions? Can philosophical methods (where intuitions are concerned) be improved upon? In order to answer these questions we need to have some idea of how we should go about answering them. I defend a way of going about methodology of intuitions: a metamethodology. I claim the following: (i) we should approach methodological questions about intuitions with a thin conception of intuitions in mind; (ii) we should carve intuitions finely; and, (iii) we should carve to a grain to which we are sensitive in our everyday philosophising. The reason is that, unless we do so, we don’t get what we want from philosophical methodology. I argue that what we want is information that will aid us in formulating practical advice concerning how to do philosophy responsibly/well/better.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of fungicide resistance in the cereal pathogen Zymoseptoria tritici, is a serious threat to the sustainability and profitability of wheat production in Europe. Application of azole fungicides has been shown to affect fitness of Z. tritici variants differentially, so it has been hypothesised that combinations of azoles could slow the evolution of resistance. This work was initiated to assess the effects of dose, mixtures and alternations of two azoles on selection for isolates with reduced sensitivity and on disease control. Naturally infected field trials were carried out at six sites across Ireland and the sensitivity of Z. tritici isolates monitored pre- and post-treatment. The azoles epoxiconazole and metconazole were applied as solo products, in alternation with each other and as a pre-formulated mixture. Full and half label doses were tested. The two azoles were partially cross-resistant, with a common azole resistance principal component accounting for 75% of the variation between isolates. Selection for isolates with reduced azole sensitivity was correlated with disease control. Decreased doses were related to decreases in sensitivity but the effect was barely significant (P = 0.1) and control was reduced. Single applications of an active ingredient (a.i.) caused smaller decreases in sensitivity than double applications. Shifts in sensitivity to the a.i. applied to a plot were greater than to the a.i. not applied, and the decrease in sensitivity was greater to the a.i. applied at the second timing. These results confirm the need to mix a.i.s with different modes of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pronounced intermodel differences in the projected response of land surface precipitation (LSP) to future anthropogenic forcing remain in the Coupled Model Intercomparison Project Phase 5 model integrations. A large fraction of the intermodel spread in projected LSP trends is demonstrated here to be associated with systematic differences in simulated sea surface temperature (SST) trends, especially the representation of changes in (i) the interhemispheric SST gradient and (ii) the tropical Pacific SSTs. By contrast, intermodel differences in global mean SST, representative of differing global climate sensitivities, exert limited systematic influence on LSP patterns. These results highlight the importance to regional terrestrial precipitation changes of properly simulating the spatial distribution of large-scale, remote changes as reflected in the SST response to increasing greenhouse gases. Moreover, they provide guidance regarding which region-specific precipitation projections may be potentially better constrained for use in climate change impact assessments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• Background and Aims Earlier studies have suggested that the drying conditions routinely used by genebanks may not be optimal for subsequent seed longevity. The aim of this study was to compare the effect of hot-air drying with low temperature drying on subsequent seed longevity for 20 diverse rice accessions and to consider how factors related to seed production history might influence the results. • Methods Seeds were produced according to normal regeneration procedures at IRRI. They were harvested at different times (harvest date and days after anthesis (DAA), once for each accession) and dried either in a drying room (DR; 15% RH, 15°C), or in a flat-bed heated-air batch dryer (BD; 45°C, 8 h d-1) for up to 6 daily cycles followed by drying in the DR. Relative longevity was assessed by storage at 10.9% moisture content (m.c.) and 45°C. • Key Results Initial drying in the BD resulted in significantly greater longevity compared with the DR for 14 accessions (seed lots): the period of time for viability to fall to 50% for seeds dried in the BD as a percentage of that for seeds dried throughout in the DR varied between 1.3 and 372.2% for these 14 accessions. The seed lots that responded the most were harvested earlier in the season and at higher moisture content. Drying in the BD did not reduce subsequent longevity compared with DR drying for any of the remaining accessions. • Conclusions Seeds harvested at a m.c. where, according to the moisture desorption isotherm, they could still be metabolically active (>16.2%), may be in the first stage of the post-mass maturity, desiccation phase of seed development and able to increase longevity in response to hot-air drying. The genebank standards regarding seed drying for rice and, perhaps, for other tropical species should be reconsidered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The low expression polymorphism of the MAOA gene in interaction with adverse environments (G × E) is associated with antisocial behaviour disorders. These have their origins in early life, but it is not known whether MAOA G × E occurs in infants. We therefore examined whether MAOA G × E predicts infant anger proneness, a temperamental dimension associated with later antisocial behaviour disorders. In contrast to previous studies, we examined MAOA G × E prospectively using an observational measure of a key aspect of the infant environment, maternal sensitivity, at a specified developmental time point. Methods In a stratified epidemiological cohort recruited during pregnancy, we ascertained MAOA status (low vs. high expression alleles) from the saliva of 193 infants, and examined specific predictions to maternal report of infant temperament at 14 months from maternal sensitivity assessed at 29 weeks of age. Results Analyses, weighted to provide general population estimates, indicated a robust interaction between MAOA status and maternal sensitivity in the prediction of infant anger proneness (p = .003) which became stronger once possible confounders for maternal sensitivity were included in the model (p = .0001). The interaction terms were similar in males (p = .010) and females (p = .016), but the effects were different as a consequence of an additional sex of infant by maternal sensitivity interaction. Conclusions This prospective study provides the first evidence of moderation by the MAOA gene of effects of parenting on infant anger proneness, an important early risk for the development of disruptive and aggressive behaviour disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We revisit the issue of sensitivity to initial flow and intrinsic variability in hot-Jupiter atmospheric flow simulations, originally investigated by Cho et al. (2008) and Thrastarson & Cho (2010). The flow in the lower region (~1 to 20 MPa) `dragged' to immobility and uniform temperature on a very short timescale, as in Liu & Showman (2013), leads to effectively a complete cessation of variability as well as sensitivity in three-dimensional (3D) simulations with traditional primitive equations. Such momentum (Rayleigh) and thermal (Newtonian) drags are, however, ad hoc for 3D giant planet simulations. For 3D hot-Jupiter simulations, which typically already employ strong Newtonian drag in the upper region, sensitivity is not quenched if only the Newtonian drag is applied in the lower region, without the strong Rayleigh drag: in general, both sensitivity and variability persist if the two drags are not applied concurrently in the lower region. However, even when the drags are applied concurrently, vertically-propagating planetary waves give rise to significant variability in the ~0.05 to 0.5 MPa region, if the vertical resolution of the lower region is increased (e.g. here with 1000 layers for the entire domain). New observations on the effects of the physical setup and model convergence in ‘deep’ atmosphere simulations are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel [2014], reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a “moisture memory” effect found in Muller and Bony [2015]. Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 K and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brassicaceous vegetables (BV) have chemoprotective effects and yet consumption of BV in the UK is low. Previous studies suggest perception, liking and intake of BV are influenced by bitter taste sensitivity which this study further explores. Phenotypical taste sensitivity of 136 subjects was classified using propythiouracil (PROP) and sodium chloride and fungiform papillae density (FPD) was measured from tongue images. Polymorphisms of TAS2R38 and gustin (CA6) genes were analysed. Liking and bitterness of four raw vegetables (two BV (broccoli and white cabbage) and two non-BV (spinach and courgette)), as well as habitual consumption, were evaluated. There was a significant association between TAS2R38 genotype and PROP taster status (p<0.0001) and between FPD and PROP taster status (p=0.029). Individuals with greater sensitivity for PROP predominantly had TAS2R38 PAV/PAV genotype and greater FPD. BV were perceived as more bitter than non-BV (p<0.0001) with PAV/PAV subjects perceiving significantly stronger bitter intensity. There was a significant difference in liking for the four vegetables (p=0.002), and between consumers of different TAS2R38 genotype (p=0.0024). Individuals with TAS2R38 AVI/AVI genotype liked BV more. Regarding intake, both PAV/PAV and AVI/AVI individuals consumed more total vegetables and BV than PAV/AVI. Although PROP nontasters tended to consume more vegetables and BV than the other two phenotype groups, liking and vegetable intake were not significantly affected by taste phenotype. Although there was not a significant effect of CA6 genotype on bitterness ratings, there was a significant interaction between CA6 and TAS2R38, and in addition CA6 genotype was significantly associated with BV intake. However, these effects require validation as the proportions of the population with the CA6 G/G genotype was extremely small (7%). Our results confirmed that bitter taste perception in vegetables was influenced by both genotype and phenotype of bitter taste sensitivity. Moreover, our findings demonstrated that neither genotype nor phenotype of taste sensitivity alone accurately predict vegetable liking and intake as demographic factors were found to have a substantial influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flowering and successful pollination in wheat are key determinants of both quantity and quality of grain. Bread wheat line ‘Paragon’, introgressed with single or multiple day length insensitivity alleles was used to dissect the effects on the timing and duration of flowering within a hierarchical plant architecture. Flowering of wheat plants was observed in a series of pot-based and field experiments. Ppd-D1a was the most potent known allele affecting the timing of flowering, requiring the least thermal time to flowering across all experiments. The duration of flowering for individual lines was dominated by the shift in the start of flowering in later tillers and the number of tillers per plant, rather than variation in flowering duration of individual spikes. There was a strong relationship between flowering duration and the start of flowering with the earliest lines flowering for the longest. The greatest flowering overlap between tillers was recorded for the Ppd-1b. Across all lines, a warmer environment significantly reduced the duration of flowering and the influence of Ppd-1a alleles on the start of flowering. These findings provide evidence of pleiotropic effects of the Ppd-1a alleles, and have direct implications for breeding for increased stress resilient wheat varieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study analyzes the sensitivity and memory of the Southern Hemisphere coupled climate system to increased Antarctic sea ice (ASI), taking into account the persistence of the sea ice maxima in the current climate. The mechanisms involved in restoring the climate balance under two sets of experiments, which differ in regard to their sea ice models, are discussed. The experiments are perturbed with extremes of ASI and integrated for 10 yr in a large 30-member ensemble. The results show that an ASI maximum is able to persist for ; 4 yr in the current climate, followed by a negative sea ice phase. The sea ice insulating effect during the positive phase reduces heat fluxes south of 60 8 S, while at the same time these are intensified at the sea ice edge. The increased air stability over the sea ice field strengthens the polar cell while the baroclinicity increases at midlatitudes. The mean sea level pressure is reduced (increased) over high latitudes (midlatitudes), typical of the southern annular mode (SAM) positive phase. The Southern Ocean (SO) becomes colder and fresher as the sea ice melts mainly through sea ice lateral melting, the consequence of which is an increase in the ocean stability by buoyancy and mixing changes. The climate sensitivity is triggered by the sea ice insulating process and the resulting freshwater pulse (fast response), while the climate equilibrium is restored by the heat stored in the SO subsurface layers (long response). It is concluded that the time needed for the ASI anomaly to be dissipated and/or melted is shortened by the sea ice dynamical processes.