239 resultados para data assimilation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe the development of a program that aims at the optimal integration of observed data in an oceanographic model describ

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A system for continuous data assimilation is presented and discussed. To simulate the dynamical development a channel version of a balanced barotropic model is used and geopotential (height) data are assimilated into the models computations as data become available. In the first experiment the updating is performed every 24th, 12th and 6th hours with a given network. The stations are distributed at random in 4 groups in order to simulate 4 areas with different density of stations. Optimum interpolation is performed for the difference between the forecast and the valid observations. The RMS-error of the analyses is reduced in time, and the error being smaller the more frequent the updating is performed. The updating every 6th hour yields an error in the analysis less than the RMS-error of the observation. In a second experiment the updating is performed by data from a moving satellite with a side-scan capability of about 15°. If the satellite data are analysed at every time step before they are introduced into the system the error of the analysis is reduced to a value below the RMS-error of the observation already after 24 hours and yields as a whole a better result than updating from a fixed network. If the satellite data are introduced without any modification the error of the analysis is reduced much slower and it takes about 4 days to reach a comparable result to the one where the data have been analysed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several global quantities are computed from the ERA40 reanalysis for the period 1958-2001 and explored for trends. These are discussed in the context of changes to the global observing system. Temperature, integrated water vapor (IWV), and kinetic energy are considered. The ERA40 global mean temperature in the lower troposphere has a trend of +0.11 K per decade over the period of 1979-2001, which is slightly higher than the MSU measurements, but within the estimated error limit. For the period 1958 2001 the warming trend is 0.14 K per decade but this is likely to be an artifact of changes in the observing system. When this is corrected for, the warming trend is reduced to 0.10 K per decade. The global trend in IWV for the period 1979-2001 is +0.36 mm per decade. This is about twice as high as the trend determined from the Clausius-Clapeyron relation assuming conservation of relative humidity. It is also larger than results from free climate model integrations driven by the same observed sea surface temperature as used in ERA40. It is suggested that the large trend in IWV does not represent a genuine climate trend but an artifact caused by changes in the global observing system such as the use of SSM/I and more satellite soundings in later years. Recent results are in good agreement with GPS measurements. The IWV trend for the period 1958-2001 is still higher but reduced to +0.16 mm per decade when corrected for changes in the observing systems. Total kinetic energy shows an increasing global trend. Results from data assimilation experiments strongly suggest that this trend is also incorrect and mainly caused by the huge changes in the global observing system in 1979. When this is corrected for, no significant change in global kinetic energy from 1958 onward can be found.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ozone profiles from the Microwave Limb Sounder (MLS) onboard the Aura satellite of the NASA's Earth Observing System (EOS) were experimentally added to the European Centre for Medium-range Weather Forecasts (ECMWF) four-dimensional variational (4D-var) data assimilation system of version CY30R1, in which total ozone columns from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) onboard the Envisat satellite and partial profiles from the Solar Backscatter Ultraviolet (SBUV/2) instrument onboard the NOAA-16 satellite have been operationally assimilated. As shown by results for the autumn of 2005, additional constraints from MLS data significantly improved the agreement of the analyzed ozone fields with independent observations throughout most of the stratosphere, owing to the daily near-global coverage and good vertical resolution of MLS observations. The largest impacts were seen in the middle and lower stratosphere, where model deficiencies could not be effectively corrected by the operational observations without the additional information on the ozone vertical distribution provided by MLS. Even in the upper stratosphere, where ozone concentrations are mainly determined by rapid chemical processes, dense and vertically resolved MLS data helped reduce the biases related to model deficiencies. These improvements resulted in a more realistic and consistent description of spatial and temporal variations in stratospheric ozone, as demonstrated by cases in the dynamically and chemically active regions. However, combined assimilation of the often discrepant ozone observations might lead to underestimation of tropospheric ozone. In addition, model deficiencies induced large biases in the upper stratosphere in the medium-range (5-day) ozone forecasts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Global Ocean Data Assimilation Experiment (GODAE [http:// www.godae.org]) has spanned a decade of rapid technological development. The ever-increasing volume and diversity of oceanographic data produced by in situ instruments, remote-sensing platforms, and computer simulations have driven the development of a number of innovative technologies that are essential for connecting scientists with the data that they need. This paper gives an overview of the technologies that have been developed and applied in the course of GODAE, which now provide users of oceanographic data with the capability to discover, evaluate, visualize, download, and analyze data from all over the world. The key to this capability is the ability to reduce the inherent complexity of oceanographic data by providing a consistent, harmonized view of the various data products. The challenges of data serving have been addressed over the last 10 years through the cooperative skills and energies of many individuals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ozone and temperature profiles from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been assimilated, using three-dimensional variational assimilation, into a stratosphere troposphere version of the Met Office numerical weather-prediction system. Analyses are made for the month of September 2002, when there was an unprecedented split in the southern hemisphere polar vortex. The analyses are validated against independent ozone observations from sondes, limb-occultation and total column ozone satellite instruments. Through most of the stratosphere, precision varies from 5 to 15%, and biases are 15% or less of the analysed field. Problems remain in the vortex and below the 60 hPa. level, especially at the tropopause where the analyses have too much ozone and poor agreement with independent data. Analysis problems are largely a result of the model rather than the data, giving confidence in the MIPAS ozone retrievals, though there may be a small high bias in MIPAS ozone in the lower stratosphere. Model issues include an excessive Brewer-Dobson circulation, which results both from known problems with the tracer transport scheme and from the data assimilation of dynamical variables. The extreme conditions of the vortex split reveal large differences between existing linear ozone photochemistry schemes. Despite these issues, the ozone analyses are able to successfully describe the ozone hole split and compare well to other studies of this event. Recommendations are made for the further development of the ozone assimilation system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent observations from the Argo dataset of temperature and salinity profiles are used to evaluate a series of 3-year data assimilation experiments in a global ice–ocean general circulation model. The experiments are designed to evaluate a new data assimilation system whereby salinity is assimilated along isotherms, S(T ). In addition, the role of a balancing salinity increment to maintain water mass properties is investigated. This balancing increment is found to effectively prevent spurious mixing in tropical regions induced by univariate temperature assimilation, allowing the correction of isotherm geometries without adversely influencing temperature–salinity relationships. In addition, the balancing increment is able to correct a fresh bias associated with a weak subtropical gyre in the North Atlantic using only temperature observations. The S(T ) assimilation method is found to provide an important improvement over conventional depth level assimilation, with lower root-mean-squared forecast errors over the upper 500 m in the tropical Atlantic and Pacific Oceans. An additional set of experiments is performed whereby Argo data are withheld and used for independent evaluation. The most significant improvements from Argo assimilation are found in less well-observed regions (Indian, South Atlantic and South Pacific Oceans). When Argo salinity data are assimilated in addition to temperature, improvements to modelled temperature fields are obtained due to corrections to model density gradients and the resulting circulation. It is found that observations from the Argo array provide an invaluable tool for both correcting modelled water mass properties through data assimilation and for evaluating the assimilation methods themselves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Snow is an important component of the land surface, and the choice of products for assimilation or verification can have a large impact on the surface analysis. This paper introduces the many sources of snow data that are currently available, both in situ and from remote sensing from space, along with some recent developments. Snow extent products are derived from the biggest range of sensors and are the most widely used, while information on snow mass from space is still too error-prone to be used successfully in assimilation schemes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The problem of reconstructing the (otherwise unknown) source and sink field of a tracer in a fluid is studied by developing and testing a simple tracer transport model of a single-level global atmosphere and a dynamic data assimilation system. The source/sink field (taken to be constant over a 10-day assimilation window) and initial tracer field are analysed together by assimilating imperfect tracer observations over the window. Experiments show that useful information about the source/sink field may be determined from relatively few observations when the initial tracer field is known very accurately a-priori, even when a-priori source/sink information is biased (the source/sink a-priori is set to zero). In this case each observation provides information about the source/sink field at positions upstream and the assimilation of many observations together can reasonably determine the location and strength of a test source.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As part of a large European coastal operational oceanography project (ECOOP), we have developed a web portal for the display and comparison of model and in situ marine data. The distributed model and in situ datasets are accessed via an Open Geospatial Consortium Web Map Service (WMS) and Web Feature Service (WFS) respectively. These services were developed independently and readily integrated for the purposes of the ECOOP project, illustrating the ease of interoperability resulting from adherence to international standards. The key feature of the portal is the ability to display co-plotted timeseries of the in situ and model data and the quantification of misfits between the two. By using standards-based web technology we allow the user to quickly and easily explore over twenty model data feeds and compare these with dozens of in situ data feeds without being concerned with the low level details of differing file formats or the physical location of the data. Scientific and operational benefits to this work include model validation, quality control of observations, data assimilation and decision support in near real time. In these areas it is essential to be able to bring different data streams together from often disparate locations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We review the procedures and challenges that must be considered when using geoid data derived from the Gravity and steady-state Ocean Circulation Explorer (GOCE) mission in order to constrain the circulation and water mass representation in an ocean 5 general circulation model. It covers the combination of the geoid information with timemean sea level information derived from satellite altimeter data, to construct a mean dynamic topography (MDT), and considers how this complements the time-varying sea level anomaly, also available from the satellite altimeter. We particularly consider the compatibility of these different fields in their spatial scale content, their temporal rep10 resentation, and in their error covariances. These considerations are very important when the resulting data are to be used to estimate ocean circulation and its corresponding errors. We describe the further steps needed for assimilating the resulting dynamic topography information into an ocean circulation model using three different operational fore15 casting and data assimilation systems. We look at methods used for assimilating altimeter anomaly data in the absence of a suitable geoid, and then discuss different approaches which have been tried for assimilating the additional geoid information. We review the problems that have been encountered and the lessons learned in order the help future users. Finally we present some results from the use of GRACE geoid in20 formation in the operational oceanography community and discuss the future potential gains that may be obtained from a new GOCE geoid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the Arctic basin circulation, freshwater content (FWC) and heat budget by using a high-resolution global coupled ice–ocean model implemented with a state-of-the-art data assimilation scheme. We demonstrate that, despite a very sparse dataset, by assimilating hydrographic data in and near the Arctic basin, the initial warm bias and drift in the control run is successfully corrected, reproducing a much more realistic vertical and horizontal structure to the cyclonic boundary current carrying the Atlantic Water (AW) along the Siberian shelves in the reanalysis run. The Beaufort Gyre structure and FWC and variability are also more accurately reproduced. Small but important changes in the strait exchange flows are found which lead to more balanced budgets in the reanalysis run. Assimilation fluxes dominate the basin budgets over the first 10 years (P1: 1987–1996) of the reanalysis for both heat and FWC, after which the drifting Arctic upper water properties have been restored to realistic values. For the later period (P2: 1997–2004), the Arctic heat budget is almost balanced without assimilation contributions, while the freshwater budget shows reduced assimilation contributions compensating largely for surface salinity damping, which was extremely strong in this run. A downward trend in freshwater export at the Canadian Straits and Fram Strait is found in period P2, associated with Beaufort Gyre recharge. A detailed comparison with observations and previous model studies at the individual Arctic straits is also included.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate a simplified form of variational data assimilation in a fully nonlinear framework with the aim of extracting dynamical development information from a sequence of observations over time. Information on the vertical wind profile, w(z ), and profiles of temperature, T (z , t), and total water content, qt (z , t), as functions of height, z , and time, t, are converted to brightness temperatures at a single horizontal location by defining a two-dimensional (vertical and time) variational assimilation testbed. The profiles of T and qt are updated using a vertical advection scheme. A basic cloud scheme is used to obtain the fractional cloud amount and, when combined with the temperature field, this information is converted into a brightness temperature, using a simple radiative transfer scheme. It is shown that our model exhibits realistic behaviour with regard to the prediction of cloud, but the effects of nonlinearity become non-negligible in the variational data assimilation algorithm. A careful analysis of the application of the data assimilation scheme to this nonlinear problem is presented, the salient difficulties are highlighted, and suggestions for further developments are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The need for consistent assimilation of satellite measurements for numerical weather prediction led operational meteorological centers to assimilate satellite radiances directly using variational data assimilation systems. More recently there has been a renewed interest in assimilating satellite retrievals (e.g., to avoid the use of relatively complicated radiative transfer models as observation operators for data assimilation). The aim of this paper is to provide a rigorous and comprehensive discussion of the conditions for the equivalence between radiance and retrieval assimilation. It is shown that two requirements need to be satisfied for the equivalence: (i) the radiance observation operator needs to be approximately linear in a region of the state space centered at the retrieval and with a radius of the order of the retrieval error; and (ii) any prior information used to constrain the retrieval should not underrepresent the variability of the state, so as to retain the information content of the measurements. Both these requirements can be tested in practice. When these requirements are met, retrievals can be transformed so as to represent only the portion of the state that is well constrained by the original radiance measurements and can be assimilated in a consistent and optimal way, by means of an appropriate observation operator and a unit matrix as error covariance. Finally, specific cases when retrieval assimilation can be more advantageous (e.g., when the estimate sought by the operational assimilation system depends on the first guess) are discussed.