140 resultados para crop residues


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models for water transfer in the crop-soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop-soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop-soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agro-hydrological models have widely been used for optimizing resources use and minimizing environmental consequences in agriculture. SMCRN is a recently developed sophisticated model which simulates crop response to nitrogen fertilizer for a wide range of crops, and the associated leaching of nitrate from arable soils. In this paper, we describe the improvements of this model by replacing the existing approximate hydrological cascade algorithm with a new simple and explicit algorithm for the basic soil water flow equation, which not only enhanced the model performance in hydrological simulation, but also was essential to extend the model application to the situations where the capillary flow is important. As a result, the updated SMCRN model could be used for more accurate study of water dynamics in the soil-crop system. The success of the model update was demonstrated by the simulated results that the updated model consistently out-performed the original model in drainage simulations and in predicting time course soil water content in different layers in the soil-wheat system. Tests of the updated SMCRN model against data from 4 field crop experiments showed that crop nitrogen offtakes and soil mineral nitrogen in the top 90 cm were in a good agreement with the measured values, indicating that the model could make more reliable predictions of nitrogen fate in the crop-soil system, and thus provides a useful platform to assess the impacts of nitrogen fertilizer on crop yield and nitrogen leaching from different production systems. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been proposed that growing crop varieties with higher canopy albedo would lower summer-time temperatures over North America and Eurasia and provide a partial mitigation of global warming ('bio-geoengineering') (Ridgwell et al 2009 Curr. Biol. 19 1–5). Here, we use a coupled ocean–atmosphere–vegetation model (HadCM3) with prescribed agricultural regions, to investigate to what extent the regional effectiveness of crop albedo bio-geoengineering might be influenced by a progressively warming climate as well as assessing the impacts on regional hydrological cycling and primary productivity. Consistent with previous analysis, we find that the averted warming due to increasing crop canopy albedo by 0.04 is regionally and seasonally specific, with the largest cooling of ~1 °C for Europe in summer whereas in the low latitude monsoonal SE Asian regions of high density cropland, the greatest cooling is experienced in winter. In this study we identify potentially important positive impacts of increasing crop canopy albedo on soil moisture and primary productivity in European cropland regions, due to seasonal increases in precipitation. We also find that the background climate state has an important influence on the predicted regional effectiveness of bio-geoengineering on societally-relevant timescales (ca 100 years). The degree of natural climate variability and its dependence on greenhouse forcing that are evident in our simulations highlights the difficulties faced in the detection and verification of climate mitigation in geoengineering schemes. However, despite the small global impact, regionally focused schemes such as crop albedo bio-geoengineering have detection advantages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pollinated mass flowering crops are becoming more widespread and there is a need to understand which insects are primarily responsible for the pollination of these crops so conservation measures can be appropriately targeted in the face of pollinator declines. This study used field surveys in conjunction with cage manipulations to identify the relative contributions of different pollinator taxa to the pollination of two widespread flowering crops, field beans and oilseed rape. Flower visiting pollinator communities observed in the field were distinct for each crop; while field beans were visited primarily by a few bumblebee species, multiple pollinator taxa visited oilseed, and the composition of this pollinator community was highly variable spatially and temporally. Neither pollinator community, however, appears to be meeting the demands of crops in our study regions. Cage manipulations showed that multiple taxa can effectively pollinate both oilseed and field beans, but bumblebees are particularly effective bean pollinators. Combining field observations and cage manipulations demonstrated that the pollination demands of these two mass flowering crops are highly contrasting, one would benefit from management to increase the abundance of some key taxa, whilst for the other, boosting overall pollinator abundance and diversity would be more appropriate. Our findings highlight the need for crop specific mitigation strategies that are targeted at conserving specific pollinator taxa (or group of taxa) that are both active and capable of crop pollination in order to reduce pollination deficits and meet the demands of future crop production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods: We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient fromsimple to heterogeneous landscapes. Results: Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Pollinating insects provide crucial and economically important ecosystem services to crops and wild plants, but pollinators, particularly bees, are globally declining as a result of various driving factors, including the prevalent use of pesticides for crop protection. Sublethal pesticide exposure negatively impacts numerous pollinator lifehistory traits, but its influence on reproductive success remains largely unknown. Such information is pivotal, however, to our understanding of the long-term effects on population dynamics. 2 We investigated the influence of field-realistic trace residues of the routinely used neonicotinoid insecticides thiamethoxam and clothianidin in nectar substitutes on the entire life-time fitness performance of the red mason bee Osmia bicornis. 3 We show that chronic, dietary neonicotinoid exposure has severe detrimental effects on solitary bee reproductive output. Neonicotinoids did not affect adult bee mortality; however, monitoring of fully controlled experimental populations revealed that sublethal exposure resulted in almost 50% reduced total offspring production and a significantly male-biased offspring sex ratio. 4 Our data add to the accumulating evidence indicating that sublethal neonicotinoid effects on non-Apis pollinators are expressed most strongly in a rather complex, fitness-related context. Consequently, to fully mitigate long-term impacts on pollinator population dynamics, present pesticide risk assessments need to be expanded to include whole life-cycle fitness estimates, as demonstrated in the present study using O. bicornis as a model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential risk of agricultural pesticides to mammals typically depends on internal concentrations within individuals, and these are determined by the amount ingested and by absorption, distribution, metabolism, and excretion (ADME). Pesticide residues ingested depend, amongst other things, on individual spatial choices which determine how much and when feeding sites and areas of pesticide application overlap, and can be calculated using individual-based models (IBMs). Internal concentrations can be calculated using toxicokinetic (TK) models, which are quantitative representations of ADME processes. Here we provide a population model for the wood mouse (Apodemus sylvaticus) in which TK submodels were incorporated into an IBM representation of individuals making choices about where to feed. This allows us to estimate the contribution of individual spatial choice and TK processes to risk. We compared the risk predicted by four IBMs: (i) “AllExposed-NonTK”: assuming no spatial choice so all mice have 100% exposure, no TK, (ii) “AllExposed-TK”: identical to (i) except that the TK processes are included where individuals vary because they have different temporal patterns of ingestion in the IBM, (iii) “Spatial-NonTK”: individual spatial choice, no TK, and (iv) “Spatial-TK”: individual spatial choice and with TK. The TK parameters for hypothetical pesticides used in this study were selected such that a conventional risk assessment would fail. Exposures were standardised using risk quotients (RQ; exposure divided by LD50 or LC50). We found that for the exposed sub-population including either spatial choice or TK reduced the RQ by 37–85%, and for the total population the reduction was 37–94%. However spatial choice and TK together had little further effect in reducing RQ. The reasons for this are that when the proportion of time spent in treated crop (PT) approaches 1, TK processes dominate and spatial choice has very little effect, and conversely if PT is small spatial choice dominates and TK makes little contribution to exposure reduction. The latter situation means that a short time spent in the pesticide-treated field mimics exposure from a small gavage dose, but TK only makes a substantial difference when the dose was consumed over a longer period. We concluded that a combined TK-IBM is most likely to bring added value to the risk assessment process when the temporal pattern of feeding, time spent in exposed area and TK parameters are at an intermediate level; for instance wood mice in foliar spray scenarios spending more time in crop fields because of better plant cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 Insects using olfactory stimuli to forage for prey/hosts are proposed to encounter a ‘reliability–detectability problem’, where the usability of a stimulus depends on its reliability as an indicator of herbivore presence and its detectability. 2 We investigated this theory using the responses of female seven-spot ladybirds Coccinella septempunctata (Coleoptera: Coccinellidae) to plant headspace chemicals collected from the peach-potato aphid Myzus persicae and four commercially available Brassica cultivars; Brassica rapa L. cultivar ‘turnip purple top’, Brassica juncea L. cultivar ‘red giant mustard’, Brassica napus L. cultivar ‘Apex’, Brassica napus L. cultivar ‘Courage’ and Arabidopsis thaliana. For each cultivar/species, responses to plants that were undamaged, previously infested by M. persicae and infested with M. persicae, were investigated using dual-choice Petri dish bioassays and circular arenas. 3 There was no evidence that ladybirds responded to headspace chemicals from aphids alone. Ladybirds significantly preferred headspace chemicals from B. napus cv. Apex that were undamaged compared with those from plants infested with aphids. For the other four species/cultivars, there was a consistent trend of the predators being recorded more often in the half of the Petri dish containing plant headspace chemicals from previously damaged and infested plants compared with those from undamaged ones. Furthermore, the mean distance ladybirds walked to reach aphid-infested A. thaliana was significantly shorter than to reach undamaged plants. These results suggest that aphid-induced plant chemicals could act as an arrestment or possibly an attractant stimulus to C. septempunctata. However, it is also possible that C. septempunctata could have been responding to aphid products, such as honeydew, transferred to the previously damaged and infested plants. 4 The results provide evidence to support the ‘reliability–detectability’ theory and suggest that the effectiveness of C. septempunctata as a natural enemy of aphids may be strongly affected by which species and cultivar of Brassica are being grown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2-Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant -0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to -2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of -0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An evidence-based review of the potential impact that the introduction of genetically-modified (GM) cereal and oilseed crops could have for the UK was carried out. The inter-disciplinary research project addressed the key research questions using scenarios for the uptake, or not, of GM technologies. This was followed by an extensive literature review, stakeholder consultation and financial modelling. The world area of canola, oilseed rape (OSR) low in both erucic acid in the oil and glucosinolates in the meal, was 34M ha in 2012 of which 27% was GM; Canada is the lead producer but it is also grown in the USA, Australia and Chile. Farm level effects of adopting GM OSR include: lower production costs; higher yields and profits; and ease of farm management. Growing GM OSR instead of conventional OSR reduces both herbicide usage and environmental impact. Some 170M ha of maize was grown in the world in 2011 of which 28% was GM; the main producers are the USA, China and Brazil. Spain is the main EU producer of GM maize although it is also grown widely in Portugal. Insect resistant (IR) and herbicide tolerant (HT) are the GM maize traits currently available commercially. Farm level benefits of adopting GM maize are lower costs of production through reduced use of pesticides and higher profits. GM maize adoption results in less pesticide usage than on conventional counterpart crops leading to less residues in food and animal feed and allowing increasing diversity of bees and other pollinators. In the EU, well-tried coexistence measures for growing GM crops in the proximity of conventional crops have avoided gene flow issues. Scientific evidence so far seems to indicate that there has been no environmental damage from growing GM crops. They may possibly even be beneficial to the environment as they result in less pesticides and herbicides being applied and improved carbon sequestration from less tillage. A review of work on GM cereals relevant for the UK found input trait work on: herbicide and pathogen tolerance; abiotic stress such as from drought or salinity; and yield traits under different field conditions. For output traits, work has mainly focussed on modifying the nutritional components of cereals and in connection with various enzymes, diagnostics and vaccines. Scrutiny of applications submitted for field trial testing of GM cereals found around 9000 applications in the USA, 15 in Australia and 10 in the EU since 1996. There have also been many patent applications and granted patents for GM cereals in the USA for both input and output traits;an indication of the scale of such work is the fact that in a 6 week period in the spring of 2013, 12 patents were granted relating to GM cereals. A dynamic financial model has enabled us to better understand and examine the likely performance of Bt maize and HT OSR for the south of the UK, if cultivation is permitted in the future. It was found that for continuous growing of Bt maize and HT OSR, unless there was pest pressure for the former and weed pressure for the latter, the seed premia and likely coexistence costs for a buffer zone between other crops would reduce the financial returns for the GM crops compared with their conventional counterparts. When modelling HT OSR in a four crop rotation, it was found that gross margins increased significantly at the higher levels of such pest or weed pressure, particularly for farm businesses with larger fields where coexistence costs would be scaled down. The impact of the supply of UK-produced GM crops on the wider supply chain was examined through an extensive literature review and widespread stakeholder consultation with the feed supply chain. The animal feed sector would benefit from cheaper supplies of raw materials if GM crops were grown and, in the future, they might also benefit from crops with enhanced nutritional profile (such as having higher protein levels) becoming available. This would also be beneficial to livestock producers enabling lower production costs and higher margins. Whilst coexistence measures would result in increased costs, it is unlikely that these would cause substantial changes in the feed chain structure. Retailers were not concerned about a future increase in the amount of animal feed coming from GM crops. To conclude, we (the project team) feel that the adoption of currently available and appropriate GM crops in the UK in the years ahead would benefit farmers, consumers and the feed chain without causing environmental damage. Furthermore, unless British farmers are allowed to grow GM crops in the future, the competitiveness of farming in the UK is likely to decline relative to that globally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Break crops and multi-crop rotations are common in arable farm management, and the soil quality inherited from a previous crop is one of the parameters that determine the gross margin that is achieved with a given crop from a given parcel of land. In previous work we developed a dynamic economic model to calculate the potential yield and gross margin of a set of crops grown in a selection of typical rotation scenarios, and we reported use of the model to calculate coexistence costs for GM maize grown in a crop rotation. The model predicts economic effects of pest and weed pressures in monthly time steps. Validation of the model in respect of specific traits is proceeding as data from trials with novel crop varieties is published. Alongside this aspect of the validation process, we are able to incorporate data representing the economic impact of abiotic stresses on conventional crops, and then use the model to predict the cumulative gross margin achievable from a sequence of conventional crops grown at varying levels of abiotic stress. We report new progress with this aspect of model validation. In this paper, we report the further development of the model to take account of abiotic stress arising from drought, flood, heat or frost; such stresses being introduced in addition to variable pest and weed pressure. The main purpose is to assess the economic incentive for arable farmers to adopt novel crop varieties having multiple ‘stacked’ traits introduced by means of various biotechnological tools available to crop breeders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soybean, maize and rice. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soybean at the global and country levels, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index, gross primary production and canopy height better than in the standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an Earth system and crop yield model perspective is encouraging. However, more effort is needed to develop the parametrisation of the model for specific applications. Key future model developments identified include the introduction of processes such as irrigation and nitrogen limitation which will enable better representation of the spatial variability in yield.