235 resultados para convective parameterization scheme
Resumo:
A finite difference scheme is presented for the inviscid terms of the equations of compressible fluid dynamics with general non-equilibrium chemistry and internal energy.
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, compressible flow of real gases. The scheme incorparates numerical characteristic decomposition, is shock-capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
An algorithm based on flux difference splitting is presented for the solution of two-dimensional, open channel flows. A transformation maps a non-rectangular, physical domain into a rectangular one. The governing equations are then the shallow water equations, including terms of slope and friction, in a generalized coordinate system. A regular mesh on a rectangular computational domain can then be employed. The resulting scheme has good jump capturing properties and the advantage of using boundary/body-fitted meshes. The scheme is applied to a problem of flow in a river whose geometry induces a region of supercritical flow.
Resumo:
We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.
Resumo:
In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.
Resumo:
The transport of stratospheric air into the troposphere within deep convection was investigated using the Met Office Unified Model version 6.1. Three cases were simulated in which convective systems formed over the UK in the summer of 2005. For each of these three cases, simulations were performed on a grid having 4 km horizontal grid spacing in which the convection was parameterized and on a grid having 1 km horizontal grid spacing, which permitted explicit representation of the largest energy-containing scales of deep convection. Cross-tropopause transport was diagnosed using passive tracers that were initialized above the dynamically defined tropopause (2 potential vorticity unit surface) with a mixing ratio of 1. Although the synoptic-scale environment and triggering mechanisms varied between the cases, the total simulated transport was similar in all three cases. The total stratosphere-to-troposphere transport over the lifetime of the convective systems ranged from 25 to 100 kg/m2 across the simulated convective systems and resolutions, which corresponds to ∼5–20% of the total mass located within a stratospheric column extending 2 km above the tropopause. In all simulations, the transport into the lower troposphere (defined as below 3.5 km elevation) accounted for ∼1% of the total transport across the tropopause. In the 4 km runs most of the transport was due to parameterized convection, whereas in the 1 km runs the transport was due to explicitly resolved convection. The largest difference between the simulations with different resolutions occurred in the one case of midlevel convection considered, in which the total transport in the 1 km grid spacing simulation with explicit convection was 4 times that in the 4 km grid spacing simulation with parameterized convection. Although the total cross-tropopause transport was similar, stratospheric tracer was deposited more deeply to near-surface elevations in the convection-parameterizing simulations than in convection-permitting simulations.
Resumo:
This paper presents a new image data fusion scheme by combining median filtering with self-organizing feature map (SOFM) neural networks. The scheme consists of three steps: (1) pre-processing of the images, where weighted median filtering removes part of the noise components corrupting the image, (2) pixel clustering for each image using self-organizing feature map neural networks, and (3) fusion of the images obtained in Step (2), which suppresses the residual noise components and thus further improves the image quality. It proves that such a three-step combination offers an impressive effectiveness and performance improvement, which is confirmed by simulations involving three image sensors (each of which has a different noise structure).
Resumo:
This paper proposes a convenient signaling scheme-orthogonal on-off BPSK (O3BPSK)-for near-far (NF) resistant detection in asynchronous direct-sequence code-division multiple-access (DS/CDMA) systems (uplink). The temporally adjacent bits from different users in the received signals are decoupled by using the on-off signaling, and the original data rate is maintained with no increase in transmission rate by adopting an orthogonal structure. The detector at the receiver is a one-shot linear decorrelating detector, which depends upon neither hard decision nor specific channel coding. The application of O3 strategy to the differentially encoded BPSK (D-BPSK) sequences is also presented. Finally, some computer simulations are shown to confirm the theoretical analysis.
Resumo:
This paper proposes a three-shot improvement scheme for the hard-decision based method (HDM), an implementation solution for linear decorrelating detector (LDD) in asynchronous DS/CDMA systems. By taking advantage of the preceding (already reconstructed) bit and the matched filter output for the following two bits, the coupling between temporally adjacent bits (TABs), which always exists for asynchronous systems, is greatly suppressed and the performance of the original HDM is substantially improved. This new scheme requires no signaling overhead yet offers nearly the same performance as those more complicated methods. Also, it can easily accommodate the change in the number of active users in the channel, as no symbol/bit grouping is involved. Finally, the influence of synchronisation errors is investigated.
Resumo:
This paper proposes a new signaling scheme: orthogonal on-off BPSK (O3BPSK), for near-far resistant detection in the asynchronous DS/CDMA systems (up-link). The temporally adjacent bits from different users in the received signals are decoupled by using the on-off signaling, and the original data rate is maintained with no increase in transmission rate by adopting an orthogonal structure. The detector at the receiver is a one-shot linear decorrelating detector, which depends upon neither hard-decision nor specific channel coding. Some computer simulations are shown to confirm the theoretical analysis.
Resumo:
We present a novel algorithm for joint state-parameter estimation using sequential three dimensional variational data assimilation (3D Var) and demonstrate its application in the context of morphodynamic modelling using an idealised two parameter 1D sediment transport model. The new scheme combines a static representation of the state background error covariances with a flow dependent approximation of the state-parameter cross-covariances. For the case presented here, this involves calculating a local finite difference approximation of the gradient of the model with respect to the parameters. The new method is easy to implement and computationally inexpensive to run. Experimental results are positive with the scheme able to recover the model parameters to a high level of accuracy. We expect that there is potential for successful application of this new methodology to larger, more realistic models with more complex parameterisations.
Resumo:
A novel Neuropredictive Teleoperation (NPT) Scheme is presented. The design results from two key ideas: the exploitation of the measured or estimated neural input to the human arm or its electromyograph (EMG) as the system input and the employment of a predictor of the arm movement, based on this neural signal and an arm model, to compensate for time delays in the system. Although a multitude of such models, as well as measuring devices for the neural signals and the EMG, have been proposed, current telemanipulator research has only been considering highly simplified arm models. In the present design, the bilateral constraint that the master and slave are simultaneously compliant to each other's state (equal positions and forces) is abandoned, thus obtaining a simple to analyzesuccession of only locally controlled modules, and a robustness to time delays of up to 500 ms. The proposed designs were inspired by well established physiological evidence that the brain, rather than controlling the movement on-line, programs the arm with an action plan of a complete movement, which is then executed largely in open loop, regulated only by local reflex loops. As a model of the human arm the well-established Stark model is employed, whose mathematical representation is modified to make it suitable for an engineering application. The proposed scheme is however valid for any arm model. BIBO-stability and passivity results for a variety of local control laws are reported. Simulation results and comparisons with traditional designs also highlight the advantages of the proposed design.