164 resultados para consolidamento algoritmo cloud macchine virtuali
Resumo:
Purpose: This paper aims to design an evaluation method that enables an organization to assess its current IT landscape and provide readiness assessment prior to Software as a Service (SaaS) adoption. Design/methodology/approach: The research employs a mixed of quantitative and qualitative approaches for conducting an IT application assessment. Quantitative data such as end user’s feedback on the IT applications contribute to the technical impact on efficiency and productivity. Qualitative data such as business domain, business services and IT application cost drivers are used to determine the business value of the IT applications in an organization. Findings: The assessment of IT applications leads to decisions on suitability of each IT application that can be migrated to cloud environment. Research limitations/implications: The evaluation of how a particular IT application impacts on a business service is done based on the logical interpretation. Data mining method is suggested in order to derive the patterns of the IT application capabilities. Practical implications: This method has been applied in a local council in UK. This helps the council to decide the future status of the IT applications for cost saving purpose.
Resumo:
This article focuses on the characteristics of persistent thin single-layer mixed-phase clouds. We seek to answer two important questions: (i) how does ice continually nucleate and precipitate from these clouds, without the available ice nuclei becoming depleted? (ii) how do the supercooled liquid droplets persist in spite of the net flux of water vapour to the growing ice crystals? These questions are answered quantitatively using in situ and radar observations of a long-lived mixed-phase cloud layer over the Chilbolton Observatory. Doppler radar measurements show that the top 500 m of cloud (the top 250 m of which is mixed-phase, with ice virga beneath) is turbulent and well-mixed, and the liquid water content is adiabatic. This well-mixed layer is bounded above and below by stable layers. This inhibits entrainment of fresh ice nuclei into the cloud layer, yet our in situ and radar observations show that a steady flux of ≈100 m−2s−1 ice crystals fell from the cloud over the course of ∼1 day. Comparing this flux to the concentration of conventional ice nuclei expected to be present within the well-mixed layer, we find that these nuclei would be depleted within less than 1 h. We therefore argue that nucleation in these persistent supercooled clouds is strongly time-dependent in nature, with droplets freezing slowly over many hours, significantly longer than the few seconds residence time of an ice nucleus counter. Once nucleated, the ice crystals are observed to grow primarily by vapour deposition, because of the low liquid water path (21 g m−2) yet vapour-rich environment. Evidence for this comes from high differential reflectivity in the radar observations, and in situ imaging of the crystals. The flux of vapour from liquid to ice is quantified from in situ measurements, and we show that this modest flux (3.3 g m−2h−1) can be readily offset by slow radiative cooling of the layer to space.
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud-masks. Here, this is done over both land and ocean using night-time (infrared) imagery. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 87% and 48% for ocean and land, respectively using the Bayesian technique, compared to 74% and 39%, respectively for the threshold-based techniques associated with the validation dataset.
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud masks. Here, the technique is shown to be suitable for daytime applications over land and sea, using visible and near-infrared imagery, in addition to thermal infrared. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 89% and 73% for ocean and land, respectively using the Bayesian technique, compared to 90% and 70%, respectively for the threshold-based techniques associated with the validation dataset.
Resumo:
The ability of six scanning cloud radar scan strategies to reconstruct cumulus cloud fields for radiation study is assessed. Utilizing snapshots of clean and polluted cloud fields from large eddy simulations, an analysis is undertaken of error in both the liquid water path and monochromatic downwelling surface irradiance at 870 nm of the reconstructed cloud fields. Error introduced by radar sensitivity, choice of radar scan strategy, retrieval of liquid water content (LWC), and reconstruction scheme is explored. Given an in␣nitely sensitive radar and perfect LWC retrieval, domain average surface irradiance biases are typically less than 3 W m␣2 ␣m␣1, corresponding to 5–10% of the cloud radiative effect (CRE). However, when using a realistic radar sensitivity of ␣37.5 dBZ at 1 km, optically thin areas and edges of clouds are dif␣cult to detect due to their low radar re-ectivity; in clean conditions, overestimates are of order 10 W m␣2 ␣m␣1 (~20% of the CRE), but in polluted conditions, where the droplets are smaller, this increases to 10–26 W m␣2 ␣m␣1 (~40–100% of the CRE). Drizzle drops are also problematic; if treated as cloud droplets, reconstructions are poor, leading to large underestimates of 20–46 W m␣2 ␣m␣1 in domain average surface irradiance (~40–80% of the CRE). Nevertheless, a synergistic retrieval approach combining the detailed cloud structure obtained from scanning radar with the droplet-size information and location of cloud base gained from other instruments would potentially make accurate solar radiative transfer calculations in broken cloud possible for the first time.
Resumo:
Comprehensive surface-based retrievals of cloud optical and microphysical properties were made at Taihu, a highly polluted site in the central Yangtze Delta region, during a research campaign from May 2008 to December 2009. Cloud optical depth (COD), effective radius (Re), and liquid water path (LWP) were retrieved from measurements made with a suite of ground-based and spaceborne instruments, including an Analytical Spectral Devices spectroradiometer, a multi␣lter rotating shadowband radiometer, a multichannel microwave radiometer profiler, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua satellites. Retrievals from zenith radiance measurements capture better the temporal variation of cloud properties than do retrievals from hemispherical fluxes. Annual mean LWP, COD, and Re are 115.8 ± 90.8 g/m2, 28.5 ± 19.2, and 6.9 ± 4.2 microns. Over 90% of LWP values are less than 250 g/m2. Most of the COD values (>90%) fall between 5 and 60, and ~80% of Re values are less than 10 microns. Maximum (minimum) values of LWP and Re occur in summer (winter); COD is highest in winter and spring. Raining and nonraining clouds have signi␣cant differences in LWP, COD, and Re. Rainfall frequency is best correlated with LWP, followed by COD and Re. Cloud properties retrieved from multiple ground-based instruments are also compared with those from satellite retrievals. On average, relative to surface retrievals, mean differences of satellite retrievals in cloud LWP, COD, and Re were -33.6 g/m2 (-26.4%), -5.8 (-31.4%), and 2.9 ␣m (29.3%) for 11 MODIS-Terra overpasses and -43.3 g/m2 (-22.3%), -3.0 (-10.0%), and -1.3 ␣m (-12.0%) for 8 MODIS-Aqua overpasses, respectively. These discrepancies indicate that MODIS cloud products still suffer from large uncertainties in this region.
Resumo:
We propose and demonstrate a fully probabilistic (Bayesian) approach to the detection of cloudy pixels in thermal infrared (TIR) imagery observed from satellite over oceans. Using this approach, we show how to exploit the prior information and the fast forward modelling capability that are typically available in the operational context to obtain improved cloud detection. The probability of clear sky for each pixel is estimated by applying Bayes' theorem, and we describe how to apply Bayes' theorem to this problem in general terms. Joint probability density functions (PDFs) of the observations in the TIR channels are needed; the PDFs for clear conditions are calculable from forward modelling and those for cloudy conditions have been obtained empirically. Using analysis fields from numerical weather prediction as prior information, we apply the approach to imagery representative of imagers on polar-orbiting platforms. In comparison with the established cloud-screening scheme, the new technique decreases both the rate of failure to detect cloud contamination and the false-alarm rate by one quarter. The rate of occurrence of cloud-screening-related errors of >1 K in area-averaged SSTs is reduced by 83%. Copyright © 2005 Royal Meteorological Society.
Resumo:
In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction ( fm) and its impacts on deriving the anthropogenic component of aerosol optical depth (ta) and direct radiative forcing from multispectral satellite measurements. A proxy of fm, empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying fm is then implemented into a method of estimating ta and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated ta by about 20% over global ocean, with the overestimation up to �45% in some regions and seasons. The 7-year (2001–2007) global ocean average ta is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.
Resumo:
This paper presents single-column model (SCM) simulations of a tropical squall-line case observed during the Coupled Ocean-Atmosphere Response Experiment of the Tropical Ocean/Global Atmosphere Programme. This case-study was part of an international model intercomparison project organized by Working Group 4 ‘Precipitating Convective Cloud Systems’ of the GEWEX (Global Energy and Water-cycle Experiment) Cloud System Study. Eight SCM groups using different deep-convection parametrizations participated in this project. The SCMs were forced by temperature and moisture tendencies that had been computed from a reference cloud-resolving model (CRM) simulation using open boundary conditions. The comparison of the SCM results with the reference CRM simulation provided insight into the ability of current convection and cloud schemes to represent organized convection. The CRM results enabled a detailed evaluation of the SCMs in terms of the thermodynamic structure and the convective mass flux of the system, the latter being closely related to the surface convective precipitation. It is shown that the SCMs could reproduce reasonably well the time evolution of the surface convective and stratiform precipitation, the convective mass flux, and the thermodynamic structure of the squall-line system. The thermodynamic structure simulated by the SCMs depended on how the models partitioned the precipitation between convective and stratiform. However, structural differences persisted in the thermodynamic profiles simulated by the SCMs and the CRM. These differences could be attributed to the fact that the total mass flux used to compute the SCM forcing differed from the convective mass flux. The SCMs could not adequately represent these organized mesoscale circulations and the microphysicallradiative forcing associated with the stratiform region. This issue is generally known as the ‘scale-interaction’ problem that can only be properly addressed in fully three-dimensional simulations. Sensitivity simulations run by several groups showed that the time evolution of the surface convective precipitation was considerably smoothed when the convective closure was based on convective available potential energy instead of moisture convergence. Finally, additional SCM simulations without using a convection parametrization indicated that the impact of a convection parametrization in forced SCM runs was more visible in the moisture profiles than in the temperature profiles because convective transport was particularly important in the moisture budget.
Resumo:
During April and May 2010 the ash cloud from the eruption of the Icelandic volcano Eyjafjallajökull caused widespread disruption to aviation over northern Europe. The location and impact of the eruption led to a wealth of observations of the ash cloud were being obtained which can be used to assess modelling of the long range transport of ash in the troposphere. The UK FAAM (Facility for Airborne Atmospheric Measurements) BAe-146-301 research aircraft overflew the ash cloud on a number of days during May. The aircraft carries a downward looking lidar which detected the ash layer through the backscatter of the laser light. In this study ash concentrations derived from the lidar are compared with simulations of the ash cloud made with NAME (Numerical Atmospheric-dispersion Modelling Environment), a general purpose atmospheric transport and dispersion model. The simulated ash clouds are compared to the lidar data to determine how well NAME simulates the horizontal and vertical structure of the ash clouds. Comparison between the ash concentrations derived from the lidar and those from NAME is used to define the fraction of ash emitted in the eruption that is transported over long distances compared to the total emission of tephra. In making these comparisons possible position errors in the simulated ash clouds are identified and accounted for. The ash layers seen by the lidar considered in this study were thin, with typical depths of 550–750 m. The vertical structure of the ash cloud simulated by NAME was generally consistent with the observed ash layers, although the layers in the simulated ash clouds that are identified with observed ash layers are about twice the depth of the observed layers. The structure of the simulated ash clouds were sensitive to the profile of ash emissions that was assumed. In terms of horizontal and vertical structure the best results were obtained by assuming that the emission occurred at the top of the eruption plume, consistent with the observed structure of eruption plumes. However, early in the period when the intensity of the eruption was low, assuming that the emission of ash was uniform with height gives better guidance on the horizontal and vertical structure of the ash cloud. Comparison of the lidar concentrations with those from NAME show that 2–5% of the total mass erupted by the volcano remained in the ash cloud over the United Kingdom.
Resumo:
The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME) has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter). NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.
The Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions
Resumo:
Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft’s cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.
Resumo:
Galactic Cosmic Rays are one of the major sources of ion production in the troposphere and stratosphere. Recent studies have shown that ions form electrically charged clusters which may grow to become cloud droplets. Aerosol particles charge by the attachment of ions and electrons. The collision efficiency between a particle and a water droplet increases, if the particle is electrically charged, and thus aerosol-cloud interactions can be enhanced. Because these microphysical processes may change radiative properties of cloud and impact Earth's climate it is important to evaluate these processes' quantitative effects. Five different models developed independently have been coupled to investigate this. The first model estimates cloud height from dew point temperature and the temperature profile. The second model simulates the cloud droplet growth from aerosol particles using the cloud parcel concept. In the third model, the scavenging rate of the aerosol particles is calculated using the collision efficiency between charged particles and droplets. The fourth model calculates electric field and charge distribution on water droplets and aerosols within cloud. The fifth model simulates the global electric circuit (GEC), which computes the conductivity and ionic concentration in the atmosphere in altitude range 0–45 km. The first four models are initially coupled to calculate the height of cloud, boundary condition of cloud, followed by growth of droplets, charge distribution calculation on aerosols and cloud droplets and finally scavenging. These models are incorporated with the GEC model. The simulations are verified with experimental data of charged aerosol for various altitudes. Our calculations showed an effect of aerosol charging on the CCN concentration within the cloud, due to charging of aerosols increase the scavenging of particles in the size range 0.1 µm to 1 µm.
Resumo:
We present five new cloud detection algorithms over land based on dynamic threshold or Bayesian techniques, applicable to the Advanced Along Track Scanning Radiometer (AATSR) instrument and compare these with the standard threshold based SADIST cloud detection scheme. We use a manually classified dataset as a reference to assess algorithm performance and quantify the impact of each cloud detection scheme on land surface temperature (LST) retrieval. The use of probabilistic Bayesian cloud detection methods improves algorithm true skill scores by 8-9 % over SADIST (maximum score of 77.93 % compared to 69.27 %). We present an assessment of the impact of imperfect cloud masking, in relation to the reference cloud mask, on the retrieved AATSR LST imposing a 2 K tolerance over a 3x3 pixel domain. We find an increase of 5-7 % in the observations falling within this tolerance when using Bayesian methods (maximum of 92.02 % compared to 85.69 %). We also demonstrate that the use of dynamic thresholds in the tests employed by SADIST can significantly improve performance, applicable to cloud-test data to provided by the Sea and Land Surface Temperature Radiometer (SLSTR) due to be launched on the Sentinel 3 mission (estimated 2014).