136 resultados para categorical and mix datasets
Resumo:
Surface temperature is a key aspect of weather and climate, but the term may refer to different quantities that play interconnected roles and are observed by different means. In a community-based activity in June 2012, the EarthTemp Network brought together 55 researchers from five continents to improve the interaction between scientific communities who focus on surface temperature in particular domains, to exploit the strengths of different observing systems and to better meet the needs of different communities. The workshop identified key needs for progress towards meeting scientific and societal requirements for surface temperature understanding and information, which are presented in this community paper. A "whole-Earth" perspective is required with more integrated, collaborative approaches to observing and understanding Earth's various surface temperatures. It is necessary to build understanding of the relationships between different surface temperatures, where presently inadequate, and undertake large-scale systematic intercomparisons. Datasets need to be easier to obtain and exploit for a wide constituency of users, with the differences and complementarities communicated in readily understood terms, and realistic and consistent uncertainty information provided. Steps were also recommended to curate and make available data that are presently inaccessible, develop new observing systems and build capacities to accelerate progress in the accuracy and usability of surface temperature datasets.
Resumo:
The Indian monsoon is an important component of Earth's climate system, accurate forecasting of its mean rainfall being essential for regional food and water security. Accurate measurement of the rainfall is essential for various water-related applications, the evaluation of numerical models and detection and attribution of trends, but a variety of different gridded rainfall datasets are available for these purposes. In this study, six gridded rainfall datasets are compared against the India Meteorological Department (IMD) gridded rainfall dataset, chosen as the most representative of the observed system due to its high gauge density. The datasets comprise those based solely on rain gauge observations and those merging rain gauge data with satellite-derived products. Various skill scores and subjective comparisons are carried out for the Indian region during the south-west monsoon season (June to September). Relative biases and skill metrics are documented at all-India and sub-regional scales. In the gauge-based (land-only) category, Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE) and Global Precipitation Climatology Center (GPCC) datasets perform better relative to the others in terms of a variety of skill metrics. In the merged category, the Global Precipitation Climatology Project (GPCP) dataset is shown to perform better than the Climate Prediction Center Merged Analysis of Precipitation (CMAP) for the Indian monsoon in terms of various metrics, when compared with the IMD gridded data. Most of the datasets have difficulty in representing rainfall over orographic regions including the Western Ghats mountains, in north-east India and the Himalayan foothills. The wide range of skill scores seen among the datasets and even the change of sign of bias found in some years are causes of concern. This uncertainty between datasets is largest in north-east India. These results will help those studying the Indian monsoon region to select an appropriate dataset depending on their application and focus of research.
Resumo:
African societies are dependent on rainfall for agricultural and other water-dependent activities, yet rainfall is extremely variable in both space and time and reoccurring water shocks, such as drought, can have considerable social and economic impacts. To help improve our knowledge of the rainfall climate, we have constructed a 30-year (1983–2012), temporally consistent rainfall dataset for Africa known as TARCAT (TAMSAT African Rainfall Climatology And Time-series) using archived Meteosat thermal infra-red (TIR) imagery, calibrated against rain gauge records collated from numerous African agencies. TARCAT has been produced at 10-day (dekad) scale at a spatial resolution of 0.0375°. An intercomparison of TARCAT from 1983 to 2010 with six long-term precipitation datasets indicates that TARCAT replicates the spatial and seasonal rainfall patterns and interannual variability well, with correlation coefficients of 0.85 and 0.70 with the Climate Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC) gridded-gauge analyses respectively in the interannual variability of the Africa-wide mean monthly rainfall. The design of the algorithm for drought monitoring leads to TARCAT underestimating the Africa-wide mean annual rainfall on average by −0.37 mm day−1 (21%) compared to other datasets. As the TARCAT rainfall estimates are historically calibrated across large climatically homogeneous regions, the data can provide users with robust estimates of climate related risk, even in regions where gauge records are inconsistent in time.
Resumo:
Sea surface temperature (SST) datasets have been generated from satellite observations for the period 1991–2010, intended for use in climate science applications. Attributes of the datasets specifically relevant to climate applications are: first, independence from in situ observations; second, effort to ensure homogeneity and stability through the time-series; third, context-specific uncertainty estimates attached to each SST value; and, fourth, provision of estimates of both skin SST (the fundamental measure- ment, relevant to air-sea fluxes) and SST at standard depth and local time (partly model mediated, enabling comparison with his- torical in situ datasets). These attributes in part reflect requirements solicited from climate data users prior to and during the project. Datasets consisting of SSTs on satellite swaths are derived from the Along-Track Scanning Radiometers (ATSRs) and Advanced Very High Resolution Radiometers (AVHRRs). These are then used as sole SST inputs to a daily, spatially complete, analysis SST product, with a latitude-longitude resolution of 0.05°C and good discrimination of ocean surface thermal features. A product user guide is available, linking to reports describing the datasets’ algorithmic basis, validation results, format, uncer- tainty information and experimental use in trial climate applications. Future versions of the datasets will span at least 1982–2015, better addressing the need in many climate applications for stable records of global SST that are at least 30 years in length.
Resumo:
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.
Resumo:
The weekly dependence of pollutant aerosols in the urban environment of Lisbon (Portugal) is inferred from the records of atmospheric electric field at Portela meteorological station (38°47′N,9°08′W). Measurements were made with a Bendorf electrograph. The data set exists from 1955 to 1990, but due to the contaminating effect of the radioactive fallout during 1960 and 1970s, only the period between 1980 and 1990 is considered here. Using a relative difference method a weekly dependence of the atmospheric electric field is found in these records, which shows an increasing trend between 1980 and 1990. This is consistent with a growth of population in the Lisbon metropolitan area and consequently urban activity, mainly traffic. Complementarily, using a Lomb–Scargle periodogram technique the presence of a daily and weekly cycle is also found. Moreover, to follow the evolution of theses cycles, in the period considered, a simple representation in a colour surface plot representation of the annual periodograms is presented. Further, a noise analysis of the periodograms is made, which validates the results found. Two datasets were considered: all days in the period, and fair-weather days only.
Resumo:
ESA’s first multi-satellite mission Cluster is unique in its concept of 4 satellites orbiting in controlled formations. This will give an unprecedented opportunity to study structure and dynamics of the magnetosphere. In this paper we discuss ways in which ground-based remote-sensing observations of the ionosphere can be used to support the multipoint in-situ satellite measurements. There are a very large number of potentially useful configurations between the satellites and any one ground-based observatory; however, the number of ideal occurrences for any one configuration is low. Many of the ground-based instruments cannot operate continuously and Cluster will take data only for a part of each orbit, depending on how much high-resolution (‘burst-mode’) data are acquired. In addition, there are a great many instrument modes and the formation, size and shape of the cluster of the four satellites to consider. These circumstances create a clear and pressing need for careful planning to ensure that the scientific return from Cluster is maximised by additional coordinated ground-based observations. For this reason, ESA established a working group to coordinate the observations on the ground with Cluster. We will give a number of examples how the combined spacecraft and ground-based observations can address outstanding questions in magnetospheric physics. An online computer tool has been prepared to allow for the planning of conjunctions and advantageous constellations between the Cluster spacecraft and individual or combined ground-based systems. During the mission a ground-based database containing index and summary data will help to identify interesting datasets and allow to select intervals for coordinated studies. We illustrate the philosophy of our approach, using a few important examples of the many possible configurations between the satellite and the ground-based instruments.
Resumo:
The Environmental Data Abstraction Library provides a modular data management library for bringing new and diverse datatypes together for visualisation within numerous software packages, including the ncWMS viewing service, which already has very wide international uptake. The structure of EDAL is presented along with examples of its use to compare satellite, model and in situ data types within the same visualisation framework. We emphasize the value of this capability for cross calibration of datasets and evaluation of model products against observations, including preparation for data assimilation.
Resumo:
Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.
Resumo:
For general home monitoring, a system should automatically interpret people’s actions. The system should be non-intrusive, and able to deal with a cluttered background, and loose clothes. An approach based on spatio-temporal local features and a Bag-of-Words (BoW) model is proposed for single-person action recognition from combined intensity and depth images. To restore the temporal structure lost in the traditional BoW method, a dynamic time alignment technique with temporal binning is applied in this work, which has not been previously implemented in the literature for human action recognition on depth imagery. A novel human action dataset with depth data has been created using two Microsoft Kinect sensors. The ReadingAct dataset contains 20 subjects and 19 actions for a total of 2340 videos. To investigate the effect of using depth images and the proposed method, testing was conducted on three depth datasets, and the proposed method was compared to traditional Bag-of-Words methods. Results showed that the proposed method improves recognition accuracy when adding depth to the conventional intensity data, and has advantages when dealing with long actions.
Resumo:
The Land surface Processes and eXchanges (LPX) model is a fire-enabled dynamic global vegetation model that performs well globally but has problems representing fire regimes and vegetative mix in savannas. Here we focus on improving the fire module. To improve the representation of ignitions, we introduced a reatment of lightning that allows the fraction of ground strikes to vary spatially and seasonally, realistically partitions strike distribution between wet and dry days, and varies the number of dry days with strikes. Fuel availability and moisture content were improved by implementing decomposition rates specific to individual plant functional types and litter classes, and litter drying rates driven by atmospheric water content. To improve water extraction by grasses, we use realistic plant-specific treatments of deep roots. To improve fire responses, we introduced adaptive bark thickness and post-fire resprouting for tropical and temperate broadleaf trees. All improvements are based on extensive analyses of relevant observational data sets. We test model performance for Australia, first evaluating parameterisations separately and then measuring overall behaviour against standard benchmarks. Changes to the lightning parameterisation produce a more realistic simulation of fires in southeastern and central Australia. Implementation of PFT-specific decomposition rates enhances performance in central Australia. Changes in fuel drying improve fire in northern Australia, while changes in rooting depth produce a more realistic simulation of fuel availability and structure in central and northern Australia. The introduction of adaptive bark thickness and resprouting produces more realistic fire regimes in Australian savannas. We also show that the model simulates biomass recovery rates consistent with observations from several different regions of the world characterised by resprouting vegetation. The new model (LPX-Mv1) produces an improved simulation of observed vegetation composition and mean annual burnt area, by 33 and 18% respectively compared to LPX.
Resumo:
The evolution of fungicide resistance in the cereal pathogen Zymoseptoria tritici, is a serious threat to the sustainability and profitability of wheat production in Europe. Application of azole fungicides has been shown to affect fitness of Z. tritici variants differentially, so it has been hypothesised that combinations of azoles could slow the evolution of resistance. This work was initiated to assess the effects of dose, mixtures and alternations of two azoles on selection for isolates with reduced sensitivity and on disease control. Naturally infected field trials were carried out at six sites across Ireland and the sensitivity of Z. tritici isolates monitored pre- and post-treatment. The azoles epoxiconazole and metconazole were applied as solo products, in alternation with each other and as a pre-formulated mixture. Full and half label doses were tested. The two azoles were partially cross-resistant, with a common azole resistance principal component accounting for 75% of the variation between isolates. Selection for isolates with reduced azole sensitivity was correlated with disease control. Decreased doses were related to decreases in sensitivity but the effect was barely significant (P = 0.1) and control was reduced. Single applications of an active ingredient (a.i.) caused smaller decreases in sensitivity than double applications. Shifts in sensitivity to the a.i. applied to a plot were greater than to the a.i. not applied, and the decrease in sensitivity was greater to the a.i. applied at the second timing. These results confirm the need to mix a.i.s with different modes of action.
Resumo:
Current methods for initialising coupled atmosphere-ocean forecasts often rely on the use of separate atmosphere and ocean analyses, the combination of which can leave the coupled system imbalanced at the beginning of the forecast, potentially accelerating the development of errors. Using a series of experiments with the European Centre for Medium-range Weather Forecasts coupled system, the magnitude and extent of these so-called initialisation shocks is quantified, and their impact on forecast skill measured. It is found that forecasts initialised by separate ocean and atmospheric analyses do exhibit initialisation shocks in lower atmospheric temperature, when compared to forecasts initialised using a coupled data assimilation method. These shocks result in as much as a doubling of root-mean-square error on the first day of the forecast in some regions, and in increases that are sustained for the duration of the 10-day forecasts performed here. However, the impacts of this choice of initialisation on forecast skill, assessed using independent datasets, were found to be negligible, at least over the limited period studied. Larger initialisation shocks are found to follow a change in either the atmospheric or ocean model component between the analysis and forecast phases: changes in the ocean component can lead to sea surface temperature shocks of more than 0.5K in some equatorial regions during the first day of the forecast. Implications for the development of coupled forecast systems, particularly with respect to coupled data assimilation methods, are discussed.
Resumo:
This paper uses a novel numerical optimization technique - robust optimization - that is well suited to solving the asset-liability management (ALM) problem for pension schemes. It requires the estimation of fewer stochastic parameters, reduces estimation risk and adopts a prudent approach to asset allocation. This study is the first to apply it to a real-world pension scheme, and the first ALM model of a pension scheme to maximise the Sharpe ratio. We disaggregate pension liabilities into three components - active members, deferred members and pensioners, and transform the optimal asset allocation into the scheme’s projected contribution rate. The robust optimization model is extended to include liabilities and used to derive optimal investment policies for the Universities Superannuation Scheme (USS), benchmarked against the Sharpe and Tint, Bayes-Stein, and Black-Litterman models as well as the actual USS investment decisions. Over a 144 month out-of-sample period robust optimization is superior to the four benchmarks across 20 performance criteria, and has a remarkably stable asset allocation – essentially fix-mix. These conclusions are supported by six robustness checks.