125 resultados para boundary integral equation method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory of wave–mean flow interaction requires a partition of the atmospheric flow into a notional background state and perturbations to it. Here, a background state, known as the Modified Lagrangian Mean (MLM), is defined as the zonally symmetric state obtained by requiring that every potential vorticity (PV) contour lying within an isentropic layer encloses the same mass and circulation as in the full flow. For adiabatic and frictionless flow, these two integral properties are time-invariant and the MLM state is a steady solution of the primitive equations. The time dependence in the adiabatic flow is put into the perturbations, which can be described by a wave-activity conservation law that is exact even at large amplitude. Furthermore, the effects of non-conservative processes on wave activity can be calculated from the conservation law. A new method to calculate the MLM state is introduced, where the position of the lower boundary is obtained as part of the solution. The results are illustrated using Northern Hemisphere ERA-Interim data. The MLM state evolves slowly, implying that the net non-conservative effects are weak. Although ‘adiabatic eddy fluxes’ cannot affect the MLM state, the effects of Rossby-wave breaking, PV filamentation and subsequent dissipation result in sharpening of the polar vortex edge and meridional shifts in the MLM zonal flow, both at tropopause level and on the winter stratospheric vortex. The rate of downward migration of wave activity during stratospheric sudden warmings is shown to be given by the vertical scale associated with polar vortex tilt divided by the time-scale for wave dissipation estimated from the wave-activity conservation law. Aspects of troposphere–stratosphere interaction are discussed. The new framework is suitable to examine the climate and its interactions with disturbances, such as midlatitude storm tracks, and makes a clean partition between adiabatic and non-conservative processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2 . The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study discontinuous Galerkin approximations of the p-biharmonic equation for p∈(1,∞) from a variational perspective. We propose a discrete variational formulation of the problem based on an appropriate definition of a finite element Hessian and study convergence of the method (without rates) using a semicontinuity argument. We also present numerical experiments aimed at testing the robustness of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solution of an initial-boundary value problem for a linear evolution partial differential equation posed on the half-line can be represented in terms of an integral in the complex (spectral) plane. This representation is obtained by the unified transform introduced by Fokas in the 90's. On the other hand, it is known that many initial-boundary value problems can be solved via a classical transform pair, constructed via the spectral analysis of the associated spatial operator. For example, the Dirichlet problem for the heat equation can be solved by applying the Fourier sine transform pair. However, for many other initial-boundary value problems there is no suitable transform pair in the classical literature. Here we pose and answer two related questions: Given any well-posed initial-boundary value problem, does there exist a (non-classical) transform pair suitable for solving that problem? If so, can this transform pair be constructed via the spectral analysis of a differential operator? The answer to both of these questions is positive and given in terms of augmented eigenfunctions, a novel class of spectral functionals. These are eigenfunctions of a suitable differential operator in a certain generalised sense, they provide an effective spectral representation of the operator, and are associated with a transform pair suitable to solve the given initial-boundary value problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In numerical weather prediction, parameterisations are used to simulate missing physics in the model. These can be due to a lack of scientific understanding or a lack of computing power available to address all the known physical processes. Parameterisations are sources of large uncertainty in a model as parameter values used in these parameterisations cannot be measured directly and hence are often not well known; and the parameterisations themselves are also approximations of the processes present in the true atmosphere. Whilst there are many efficient and effective methods for combined state/parameter estimation in data assimilation (DA), such as state augmentation, these are not effective at estimating the structure of parameterisations. A new method of parameterisation estimation is proposed that uses sequential DA methods to estimate errors in the numerical models at each space-time point for each model equation. These errors are then fitted to pre-determined functional forms of missing physics or parameterisations that are based upon prior information. We applied the method to a one-dimensional advection model with additive model error, and it is shown that the method can accurately estimate parameterisations, with consistent error estimates. Furthermore, it is shown how the method depends on the quality of the DA results. The results indicate that this new method is a powerful tool in systematic model improvement.