123 resultados para Weed competition periods
Resumo:
Clubroot disease and the causal microbe Plasmodiophora brassicae offer abundant challenges to agriculturists and biological scientists. This microbe is well fitted for the environments which it inhabits. Plasmodiophora brassicae exists in soil as microscopic well protected resting spores and then grows actively and reproduces while shielded inside the roots of host plants. The pathogen is active outside the host for only short periods. Consequently, scientific studies are made challenging by the biological context of the host and pathogen and the technology required to investigate and understand that relationship. Controlling clubroot disease is a challenge for farmers, crop consultants and plant pathology practitioners because of the limited options which are available. Full symptom expression happens solely in members of the Brassicaceae family. Currently, only a few genes expressing strong resistance to P. brassicae are known and readily available. Agrochemical control is similarly limited by difficulties in molecule formulation which combines efficacy with environmental acceptability. Manipulation of husbandry encouraging improvements in soil structure, texture, nutrient composition and moisture content can reduce populations of P. brassicae. Integrating such strategies with rotation and crop management will reduce but not eliminate this disease. There are indications that forms of biological competition may be mobilised as additions to integrated control strategies. The aim of this review is to chart key themes in the development of scientific biological understanding of this host-pathogen relationship by offering signposts to grapple with clubroot disease which devastates crops and their profitability. Particular attention is given to the link between soil and nutrient chemistry and activity of this microbe.
Resumo:
As a prelude to leaf-specific weed control using droplets targeted by a robotic weeder, amounts of herbicide required to control individual weed seedlings were estimated. Roundup Biactive was applied at doses equivalent to 1/128th to four times the recommended rate in addition to undiluted Roundup and water controls. Based on the mean ground cover of the seedlings, the recommended dose (1.5 l ha 1) was estimated and droplets were applied to individual plants by micropipette. All treatments contained 1% AS 500 SL, Agromix (adjuvant). Three weeks after application dry weights (DW) of each seedling was recorded. DW reductions of 50% were achieved in the five species tested at less than the recommended rate whereas only in one species was a 90% reduction obtained at that rate. In Galium aparine for example, 19.3 μg of glyphosate reduced DW per plant by 90% compared to the recommended dose of 8.4 μg.