149 resultados para Urban Complexity
Resumo:
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.
Resumo:
The DAPPLE (Dispersion of Air Pollutants and their Penetration into the Local Environment) project seeks to characterise near-field urban atmospheric dispersion using a multidisciplinary approach. In this paper we report on the first tracer dispersion experiment carried out in May 2003. Results of concurrent meteorological measurements are presented. Variations of receptor tracer concentration with time are presented. Meteorological observations suggest that in-street channelling and flow-switching at intersections take place. A comparison between roof top and surface measurements suggest that rapid vertical mixing occurs, and a comparison between a simple dispersion model and maximum concentrations observed are presented
Resumo:
Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that the adverse health effects of airborne particles may scale with the airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter particles emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m high. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and indicate a loss of nanoparticles from air aged during less turbulent conditions. These results suggest that nanoparticles are lost by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health.
Resumo:
As part of the DAPPLE programme two large scale urban tracer experiments using multiple simultaneous releases of cyclic perfluoroalkanes from fixed location point sources was performed. The receptor concentrations along with relevant meteorological parameters measured are compared with a three screening dispersion models in order to best predict the decay of pollution sources with respect to distance. It is shown here that the simple dispersion models tested here can provide a reasonable upper bound estimate of the maximum concentrations measured with an empirical model derived from field observations and wind tunnel studies providing the best estimate. An indoor receptor was also used to assess indoor concentrations and their pertinence to commonly used evacuation procedures.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.
Resumo:
Complexity is integral to planning today. Everyone and everything seem to be interconnected, causality appears ambiguous, unintended consequences are ubiquitous, and information overload is a constant challenge. The nature of complexity, the consequences of it for society, and the ways in which one might confront it, understand it and deal with it in order to allow for the possibility of planning, are issues increasingly demanding analytical attention. One theoretical framework that can potentially assist planners in this regard is Luhmann's theory of autopoiesis. This article uses insights from Luhmann's ideas to understand the nature of complexity and its reduction, thereby redefining issues in planning, and explores the ways in which management of these issues might be observed in actual planning practice via a reinterpreted case study of the People's Planning Campaign in Kerala, India. Overall, this reinterpretation leads to a different understanding of the scope of planning and planning practice, telling a story about complexity and systemic response. It allows the reinterpretation of otherwise familiar phenomena, both highlighting the empirical relevance of the theory and providing new and original insight into particular dynamics of the case study. This not only provides a greater understanding of the dynamics of complexity, but also produces advice to help planners implement structures and processes that can cope with complexity in practice.
Resumo:
São Paulo is one of Latin America’s most modern and developed cities, yet around one-third of its 10 million inhabitants live in poor-quality housing in sub-standard settlements. This paper describes the response of the São Paulo municipal government that took office in 2001. Through its Secretariat of Housing and Urban Development, it designed a new policy framework with a strong emphasis on improving the quantity and quality of housing for low-income groups. Supported by new legislation, financial instruments and partnerships with the private sector, the mainstays of the new policy are integrated housing and urban development, modernization of the administrative system, and public participation in all decision-making and implementation processes. The programmes centre on upgrading and legalizing land tenure in informal settlements, and regeneration of the city centre. The new focus on valuing the investments that low-income groups have already made in their housing and settlements has proved to be more cost-effective than previous interventions, leading to improvements on an impressive scale.
Resumo:
This article arises from a research project funded by the Subject Centre for Sociology, Anthropology and Politics and a literature review on ‘interdisciplinarity’ commissioned by the Subject Centre for Languages, Linguistics and Area Studies (Chettiparamb, 2007). It attempts to unpack how disciplinarity and interdisciplinarity are created through pedagogy in higher education at the module level while teaching an interdisciplinary subject such as ‘urban studies’. In particular, comparisons are made between the teaching aims and methods in two disciplines: planning and sociology. Comparisons are also made between the approach of two types of universities – a pre-1992 university and a post-1992 university. The article argues that the differences between the universities are more profound than the differences between the disciplines. The research reveals two key findings. In the pre-1992 university case study, even though the ‘contributing’ subject domains of the disciplines are similar, the disciplinary identities are maintained and accomplished in subtle ways. In contrast, in the post-1992 university, disciplinary boundaries are not so purposefully maintained, resulting in the realisation of a different construction of interdisciplinarity.