179 resultados para Saturated fatty acids
Resumo:
The aim of the present study was to compare the response of a range of atherogenic and thrombogenic risk markers to two dietary levels of saturated fatty acid (SFA) substitution with monounsaturated fatty acids (MUFA) in students living in a university hall of residence. Although the benefits of such diets have been reported for plasma lipoproteins in high-risk groups, more needs to be known about effects of more modest SFA-MUFA substitutions over the long term and in young healthy adults. In a parallel design over 16 weeks, fifty-one healthy young subjects were randomised to one of two diets: (1) a moderate-MUFA diet in which 16 g dietary SFA/100 g total fatty acids were substituted with MUFA (n 25); (2) a high-MUFA diet in which 33 g dietary SFA/100 g total fatty acids were substituted with MUFA (n 26). All subjects followed an 8-week run-in diet (reference diet), with a fatty acid composition close to the UK average values. There were no differences in plasma lipid responses between the two diets over 16 weeks of the study with similar reductions in total cholesterol (P<0.001) and LDL-cholesterol (P<0.01) in both groups; a small but significant reduction in HDL-cholesterol was also observed in both groups (P<0.01). Platelet responses to ADP (P<0.01) and arachidonic acid (P<0.05) differed with time on the two diets; at 16 weeks, platelet aggregatory response to ADP was significantly lower on the high-MUFA than the moderate-MUFA (P<0.01) diet; ADP responses were also significantly lower within this group at 8 (P< 0.05) and 16 (P< 0.01) weeks compared with baseline. There were no differences in fasting factor VII activity (factors VIII and VIIag), fibrinogen concentration or tissue-type plasminogen activator activity between the diets. There were no differences in postprandial factor VIII responses to a standard meal (area under the curve) between the diets after 16 weeks, but postprandial factor VIII response was lower than on the high-MUFA diet compared with baseline (P<0.01). In conclusion, a high-MUFA diet sustains potentially beneficial effects on platelet aggregation and postprandial activation of factor VII. Moderate or high substitution of MUFA for SFA achieves similar reductions in fasting blood lipids in young healthy subjects.
Resumo:
Objective: To describe the calculations and approaches used to design experimental diets of differing saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) compositions for use in a long-term dietary intervention study, and to evaluate the degree to which the dietary targets were met. Design, setting and subjects: Fifty-one students living in a university hall of residence consumed a reference (SFA) diet for 8 weeks followed by either a moderate MUFA (MM) diet or a high MUFA (HM) diet for 16 weeks. The three diets were designed to differ only in their proportions of SFA and MUFA, while keeping total fat, polyunsaturated fatty acids (PUFA), trans-fatty acids, and the ratio of palmitic to stearic acid, and n-6 to n-3 PUFA, unchanged. Results: Using habitual diet records and a standardised database for food fatty acid compositions, a sequential process of theoretical fat substitutions enabled suitable fat sources for use in the three diets to be identified, and experimental margarines for baking, spreading and the manufacture of snack foods to be designed. The dietary intervention was largely successful in achieving the fatty acid targets of the three diets, although unintended differences between the original target and the analysed fatty acid composition of the experimental margarines resulted in a lower than anticipated MUFA intake on the HM diet, and a lower ratio of palmitic to stearic acid compared with the reference or MM diet. Conclusions: This study has revealed important theoretical considerations that should be taken into account when designing diets of specific fatty acid composition, as well as practical issues of implementation.
Resumo:
Introduction A high saturated fatty acid intake is a well recognized risk factor for coronary heart disease development. More recently a high intake of n-6 polyunsaturated fatty acids (PUFA) in combination with a low intake of the long chain n-3 PUFA, eicosapentaenoic acid and docosahexaenoic acid has also been implicated as an important risk factor. Aim To compare total dietary fat and fatty acid intake measured by chemical analysis of duplicate diets with nutritional database analysis of estimated dietary records, collected over the same 3-day study period. Methods Total fat was analysed using soxhlet extraction and subsequently the individual fatty acid content of the diet was determined by gas chromatography. Estimated dietary records were analysed using a nutrient database which was supplemented with a selection of dishes commonly consumed by study participants. Results Bland & Altman statistical analysis demonstrated a lack of agreement between the two dietary assessment techniques for determining dietary fat and fatty acid intake. Conclusion The lack of agreement observed between dietary evaluation techniques may be attributed to inadequacies in either or both assessment techniques. This study highlights the difficulties that may be encountered when attempting to accurately evaluate dietary fat intake among the population.
Effects of dietary fat modification on skeletal muscle fatty acid handling in the metabolic syndrome
Resumo:
Objective: In the metabolic syndrome (MetS), increased fat storage in ‘nonadipose’ tissues such as skeletal muscle may be related to insulin resistance (‘lipid overflow’ hypothesis). The objective of this study was to examine the effects of dietary fat modification on the capacity of skeletal muscle to handle dietary and endogenous fatty acids (FAs). Subjects and Methods: In total, 29 men with the MetS were randomly assigned to one of four diets for 12 weeks: a high-fat saturated fat diet (HSFA, n=6), a high-fat monounsaturated fat diet (HMUFA, n=7) and two low-fat high-complex carbohydrate diets supplemented with (LFHCCn−3, n=8) or without (LFHCC, n=8) 1.24 g per day docosahexaenoic and eicosapentaenoic acid. Fasting and postprandial skeletal muscle FA handling was examined by measuring arteriovenous concentration differences across the forearm muscle. [2H2]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and free fatty acids in the circulation and subjects received a high-fat mixed meal (2.6 MJ, 61 energy% fat) containing [U-13C]-palmitate to label chylomicron-TAG. Results: Postprandial circulating TAG concentrations were significantly lower after dietary intervention in the LFHCCn−3 group compared to the HSFA group (ΔiAUC −139±67 vs 167±70 μmol l−1 min−1, P=0.009), together with decreased concentrations of [U-13C]-labeled TAG, representing dietary FA. Fasting TAG clearance across forearm muscle was decreased on the HSFA diet, whereas no differences were observed in postprandial forearm muscle FA handling between diets. Conclusion: Chronic manipulation of dietary fat quantity and quality did not affect forearm muscle FA handling in men with the MetS. Postprandial TAG concentrations decreased on the LFHCCn−3 diet, which could be (partly) explained by lower concentration of dietary FA in the circulation.
Resumo:
Background and aims: Arterial stiffness is an independent predictor of cardiovascular disease (CVD) events and all-cause mortality and may be differentially affected by dietary fatty acid (FA) intake. The aim of this study was to investigate the relationship between FA consumption and arterial stiffness and blood pressure in a community-based population. Methods and results: The Caerphilly Prospective Study recruited 2398 men, aged 45-59 years, who were followed up at 5-year intervals for a mean of 17.8-years (n 787). A semi-quantitative food frequency questionnaire estimated intakes of total, saturated, mono- and poly-unsaturated fatty acids (SFA, MUFA, PUFA). Multiple regression models investigated associations between intakes of FA at baseline with aortic pulse wave velocity (aPWV), augmentation index (AIx), systolic and diastolic blood pressure (SBP, DBP) and pulse pressure after a 17.8-year follow-up - as well as cross-sectional relationships with metabolic markers. After adjustment, higher SFA consumption at baseline was associated with higher SBP (P = 0.043) and DBP (P = 0.002) and after a 17.8-year follow-up was associated with a 0.51 m/s higher aPWV (P = 0.006). After adjustment, higher PUFA consumption at baseline was associated with lower SBP (P = 0.022) and DBP (P = 0.036) and after a 17.8-year follow-up was associated with a 0.63 m/s lower aPWV (P = 0.007). Conclusion: This study suggests that consumption of SFA and PUFA have opposing effects on arterial stiffness and blood pressure. Importantly, this study suggests that consumption of FA is an important risk factor for arterial stiffness and CVD.
Resumo:
Milk and dairy products are major sources of fat in the human diet, but there are few detailed reports on the fatty acid composition of retail milk, trans fatty acids in particular, and how these change throughout the year. Semi-skimmed milk was collected monthly for one year from five supermarkets and analysed for fatty acid composition. Relative to winter, milk sold in the summer contained lower total saturated fatty acid (SFA; 67 vs 72 g/100 g fatty acids) and higher cis-monounsaturated fatty acid (MUFA; 23 vs 21 g/100 g fatty acids) and total trans fatty acid (6.5 vs 4.5 g/100 g fatty acids) concentrations. Concentrations of most trans-18:1 and -18:2 isomers also exhibited seasonal variation. Results were applied to national dietary intakes, and indicated that monthly variation in the fatty acid composition of milk available at retail has limited influence on total dietary fatty acid consumption by UK adults.
Resumo:
The recommendation to reduce saturated fatty acid (SFA) consumption to ≤10% of total energy (%TE) is a key public health target aimed at lowering cardiovascular disease (CVD) risk. Replacement of SFA with unsaturated fats may provide greater benefit than replacement with carbohydrates, yet the optimal type of fat is unclear. The aim was to develop a flexible food-exchange model to investigate the effects of substituting SFAs with monounsaturated fatty acids (MUFAs) or n-6 (ω-6) polyunsaturated fatty acids (PUFAs) on CVD risk factors. In this parallel study, UK adults aged 21-60 y with moderate CVD risk (50% greater than the population mean) were identified using a risk assessment tool (n = 195; 56% females). Three 16-wk isoenergetic diets of specific fatty acid (FA) composition (%TE SFA:%TE MUFA:%TE n-6 PUFA) were designed using spreads, oils, dairy products, and snacks as follows: 1) SFA-rich diet (17:11:4; n = 65); 2) MUFA-rich diet (9:19:4; n = 64); and 3) n-6 PUFA-rich diet (9:13:10; n = 66). Each diet provided 36%TE total fat. Dietary targets were broadly met for all intervention groups, reaching 17.6 ± 0.4%TE SFA, 18.5 ± 0.3%TE MUFA, and 10.4 ± 0.3%TE n-6 PUFA in the respective diets, with significant overall diet effects for the changes in SFA, MUFA, and n-6 PUFA between groups (P < 0.001). There were no differences in the changes of total fat, protein, carbohydrate, and alcohol intake or anthropometric measures between groups. Plasma phospholipid FA composition showed changes from baseline in the proportions of total SFA, MUFA, and n-6 PUFA for each diet group, with significant overall diet effects for total SFA and MUFA between groups (P < 0.001). In conclusion, successful implementation of the food-exchange model broadly achieved the dietary target intakes for the exchange of SFA with MUFA or n-6 PUFA with minimal disruption to the overall diet in a free-living population. This trial was registered at clinicaltrials.gov as NCT01478958.
Resumo:
Background and Aims: We have reported that adverse effects on flow-mediated dilation of an acute elevation of non-esterified fatty acids rich in saturated fat (SFA) are reversed following addition of long-chain (LC) n-3 polyunsaturated fatty acids (PUFA), and hypothesised that these effects may be mediated through alterations in insulin signalling pathways. In a subgroup, we explored the effects of raised NEFA enriched with SFA, with or without LC n-3 PUFA, on whole body insulin sensitivity (SI) and responsiveness of the endothelium to insulin infusion. Methods and Results: Thirty adults (mean age 27.8 y, BMI 23.2 kg/m2) consumed oral fat loads on separate occasions with continuous heparin infusion to elevate NEFA between 60-390 min. For the final 150 min, a hyperinsulinaemic-euglycaemic clamp was performed, whilst FMD and circulating markers of endothelial function were measured at baseline, pre-clamp (240 min) and post-clamp (390 min). NEFA elevation during the SFA-rich drinks was associated with impaired FMD (P=0.027) whilst SFA+LC n-3 PUFA improved FMD at 240 min (P=0.003). In males, insulin infusion attenuated the increase in FMD with SFA+LC n-3 PUFA (P=0.049), with SI 10% greater with SFA+LC n-3 PUFA than SFA (P=0.041). Conclusion: This study provides evidence that NEFA composition during acute elevation influences both FMD and SI, with some indication of a difference by gender. However our findings are not consistent with the hypothesis that the effects of fatty acids on endothelial function and SI operate through a common pathway. Trial registered at clinicaltrials.gov, NCT01351324.
Resumo:
Background: Public health strategies to lower cardiovascular disease (CVD) risk involve reducing dietary saturated fatty acid (SFA) intake to ≤10% of total energy (%TE). However, the optimal type of replacement fat is unclear. Objective: We investigated the substitution of 9.5-9.6%TE dietary SFA with either monounsaturated (MUFA) or n-6 polyunsaturated fatty acids (PUFA) on vascular function and other CVD risk factors. Design: Using a randomized, controlled, single-blind, parallel group dietary intervention, 195 men and women aged 21-60 y with moderate CVD risk (≥50% above the population mean) from the United Kingdom followed one of three 16-wk isoenergetic diets (%TE target compositions, total fat:SFA:MUFA:n-6 PUFA): SFA-rich (36:17:11:4, n = 65), MUFA-rich (36:9:19:4, n = 64) or n-6 PUFA-rich (36:9:13:10, n = 66). The primary outcome measure was flow-mediated dilatation (%FMD); secondary outcome measures included fasting serum lipids, microvascular reactivity, arterial stiffness, ambulatory blood pressure, and markers of insulin resistance, inflammation and endothelial activation. Results: Replacing SFA with MUFA or n-6 PUFA did not significantly impact on %FMD (primary endpoint) or other measures of vascular reactivity. Of the secondary outcome measures, substitution of SFA with MUFA attenuated the increase in night systolic blood pressure (-4.9 mm Hg, P = 0.019) and reduced E-selectin (-7.8%, P = 0.012). Replacement with MUFA or n-6 PUFA lowered fasting serum total cholesterol (TC; -8.4% and -9.2%, respectively), low-density lipoprotein cholesterol (-11.3% and -13.6%) and TC to high-density lipoprotein cholesterol ratio (-5.6% and -8.5%) (P ≤ 0.001). These changes in low-density lipoprotein cholesterol equate to an estimated 17-20% reduction in CVD mortality. Conclusions: Substitution of 9.5-9.6%TE dietary SFA with either MUFA or n-6 PUFA did not impact significantly on %FMD or other measures of vascular function. However, the beneficial effects on serum lipid biomarkers, blood pressure and E-selectin offer a potential public health strategy for CVD risk reduction.
Resumo:
The purpose of this study was to improve the prediction of the quantity and type of Volatile Fatty Acids (VFA) produced from fermented substrate in the rumen of lactating cows. A model was formulated that describes the conversion of substrate (soluble carbohydrates, starch, hemi-cellulose, cellulose, and protein) into VFA (acetate, propionate, butyrate, and other VFA). Inputs to the model were observed rates of true rumen digestion of substrates, whereas outputs were observed molar proportions of VFA in rumen fluid. A literature survey generated data of 182 diets (96 roughage and 86 concentrate diets). Coefficient values that define the conversion of a specific substrate into VFA were estimated meta-analytically by regression of the model against observed VFA molar proportions using non-linear regression techniques. Coefficient estimates significantly differed for acetate and propionate production in particular, between different types of substrate and between roughage and concentrate diets. Deviations of fitted from observed VFA molar proportions could be attributed to random error for 100%. In addition to regression against observed data, simulation studies were performed to investigate the potential of the estimation method. Fitted coefficient estimates from simulated data sets appeared accurate, as well as fitted rates of VFA production, although the model accounted for only a small fraction (maximally 45%) of the variation in VFA molar proportions. The simulation results showed that the latter result was merely a consequence of the statistical analysis chosen and should not be interpreted as an indication of inaccuracy of coefficient estimates. Deviations between fitted and observed values corresponded to those obtained in simulations. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Few EU countries meet targets for saturated fatty acid (SFA) intake. Dairy products usually represent the single largest source of SFA, yet evidence indicates that milk has cardioprotective properties. Options for replacing some of the SFA in milk fat with cis-monounsaturated fatty acids (MUFA) through alteration of the cow’s diet are examined. Also, few people achieve minimum recommended intakes (~450–500 mg/d) of the long chain n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Enrichment of EPA+DHA in poultry meat via bird nutrition is described and how this would impact on habitual intake is discussed.
Effect of replacing grass silage with maize silage in the diet on bovine milk fatty acid composition
Resumo:
Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 X 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54:46 forage: concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6: n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS.
Resumo:
The objective of the present studies was to determine effects of basal dietary forage source on the response of milk fatty acid composition to an oil supplement based (2:1, respectively, w/w) on soybean oil and marine algae biomass oil high in cis-9, cis-12 C18:2n − 3 and C22:6n − 3, respectively. In Study 1, Hampshire × Dorset ewes (48) were randomly assigned to one of four treatments and 12 pens in a completely randomized design blocked on the basis of lambing date and number of lambs suckled. Control rations (60:40 forage:concentrate, dry matter (DM) basis) based on alfalfa pellets (AP) or corn silage (CS) were fed from lambing. Beginning at 22 days postpartum, three pens of ewes fed AP and three pens of ewes fed CS were supplemented with oil (30 g/kg of ration DM) in place of corn meal. Average ewe DM intake (DMI) and average daily gain (ADG) were measured weekly. Milk yield and composition were measured at 42 days postpartum. DMI was lower (P<0.02) for CS and for oil, but milk yield was not affected by forage source or oil supplementation. Milk fat content was higher for oil (P<0.10) and milk protein content was higher for AP (P<0.04). Total CLA concentration (g/100 g fatty acids) increased (P<0.01) with CS and oil, and the response to oil was greater for AP (P<0.04). Similarly, total trans-C18:1 and C22:6ω−3 concentrations were higher for CS and oil, but the response to oil was greater for CS (P<0.06 and P<0.01, respectively). In Study 2, the experiment was repeated using alfalfa haylage (AH) instead of AP. The DMI decreased (P<0.05) with oil feeding, but was not affected by forage source. Milk yield was decreased by feeding oil with AH, but not by feeding oil with CS (P<0.03). Milk fat content tended to be increased by feeding oil with AH, but tended to be decreased by feeding oil with CS (P<0.08). Total CLA concentration was increased (P<0.01) for AH versus CS and by oil, and the response to oil supplementation was greater for AH (P<0.01). In contrast, total trans-C18:1 concentration was higher for CS versus AH, with a greater response to oil for CS (P<0.05). Feeding marine oil increased the C22:6ω−3 (P<0.01) concentration, and the response was greater for AH (P<0.04). To further characterize the response of milk fat composition to dietary oil in ewes, a third study used six pens of three ewes each assigned to either the control CS diet used for Study 2 or the same diet supplemented with 45 g/kg (DM basis) of the oil mixture. Feeding oil had no effect on DMI, milk yield or milk fat concentration, but again increased (P<0.001) total trans-C18:1 and C22:6ω−3 concentrations and numerically increased (114%) total CLA concentration. Milk fatty acid composition responses to supplemental vegetable and marine oils were affected by forage source. Milk trans-C18:1 concentration was higher when CS was fed in Studies 1 and 2, but the effect of forage species on CLA concentration differed between studies, which may reflect differences in diet PUFA content and consumption, as well as amounts of dietary starch and fiber consumed. Despite large increases in trans-C18:1 concentration, milk fat content was not decreased by feeding unsaturated oils to ewes, even at diet levels of 45 g/kg of ration DM.
Resumo:
Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/ kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18: 1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r(2) = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4: 0 to 18: 0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20: 5 n-3, and 22: 6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18: 1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Delta(4-10) and Delta(12-15)), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen.
Resumo:
The member countries of the World Health Organization (WHO) have recently endorsed its global strategy on diet, physical activity and health. The strategy emphasises the need to limit the consumption of saturated fats and trans-fatty acids, salt and sugars, and to increase consumption of fruits and vegetables in order to combat the growing burden of non-communicable diseases. This paper attempts a broad quantitative assessment of the consumption impacts of these norms in OECD countries using a mathematical programming approach. We find that adherence to the WHO norms would involve a significant decrease in the consumption of vegetable oils (30%), dairy products (28%), sugar (24%), animal fats (30%) and meat (pig meat, 13.5%, mutton and goat 14.5%) and a significant increase in the human consumption of cereals (31%), fruits (25%) and vegetables (21%). (c) 2005 Elsevier Ltd. All rights reserved.