166 resultados para Particle Tracking
Resumo:
Visual telepresence seeks to extend existing teleoperative capability by supplying the operator with a 3D interactive view of the remote environment. This is achieved through the use of a stereo camera platform which, through appropriate 3D display devices, provides a distinct image to each eye of the operator, and which is slaved directly from the operator's head and eye movements. However, the resolution within current head mounted displays remains poor, thereby reducing the operator's visual acuity. This paper reports on the feasibility of incorporation of eye tracking to increase resolution and investigates the stability and control issues for such a system. Continuous domain and discrete simulations are presented which indicates that eye tracking provides a stable feedback loop for tracking applications, though some empirical testing (currently being initiated) of such a system will be required to overcome indicated stability problems associated with micro saccades of the human operator.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
The Solar TErrestrial RElations Observatory (STEREO) provides high cadence and high resolution images of the structure and morphology of coronal mass ejections (CMEs) in the inner heliosphere. CME directions and propagation speeds have often been estimated through the use of time-elongation maps obtained from the STEREO Heliospheric Imager (HI) data. Many of these CMEs have been identified by citizen scientists working within the SolarStormWatch project ( www.solarstormwatch.com ) as they work towards providing robust real-time identification of Earth-directed CMEs. The wide field of view of HI allows scientists to directly observe the two-dimensional (2D) structures, while the relative simplicity of time-elongation analysis means that it can be easily applied to many such events, thereby enabling a much deeper understanding of how CMEs evolve between the Sun and the Earth. For events with certain orientations, both the rear and front edges of the CME can be monitored at varying heliocentric distances (R) between the Sun and 1 AU. Here we take four example events with measurable position angle widths and identified by the citizen scientists. These events were chosen for the clarity of their structure within the HI cameras and their long track lengths in the time-elongation maps. We show a linear dependency with R for the growth of the radial width (W) and the 2D aspect ratio (χ) of these CMEs, which are measured out to ≈ 0.7 AU. We estimated the radial width from a linear best fit for the average of the four CMEs. We obtained the relationships W=0.14R+0.04 for the width and χ=2.5R+0.86 for the aspect ratio (W and R in units of AU).
Resumo:
In this study, we compare two different cyclone-tracking algorithms to detect North Atlantic polar lows, which are very intense mesoscale cyclones. Both approaches include spatial filtering, detection, tracking and constraints specific to polar lows. The first method uses digital bandpass-filtered mean sea level pressure (MSLP) fieldsin the spatial range of 200�600 km and is especially designed for polar lows. The second method also uses a bandpass filter but is based on the discrete cosine transforms (DCT) and can be applied to MSLP and vorticity fields. The latter was originally designed for cyclones in general and has been adapted to polar lows for this study. Both algorithms are applied to the same regional climate model output fields from October 1993 to September 1995 produced from dynamical downscaling of the NCEP/NCAR reanalysis data. Comparisons between these two methods show that different filters lead to different numbers and locations of tracks. The DCT is more precise in scale separation than the digital filter and the results of this study suggest that it is more suited for the bandpass filtering of MSLP fields. The detection and tracking parts also influence the numbers of tracks although less critically. After a selection process that applies criteria to identify tracks of potential polar lows, differences between both methods are still visible though the major systems are identified in both.
Resumo:
When performing data fusion, one often measures where targets were and then wishes to deduce where targets currently are. There has been recent research on the processing of such out-of-sequence data. This research has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships among the algorithms so that any approximations made are explicit. Results for a multi-sensor scenario involving out-of-sequence data association are used to illustrate the utility of this approach in a specific context.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, was reported by the preceding researchers when the target signals were shown to the subjects at relatively high speed or high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner with each other at various mean tracking frequency. The experimental results showed a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the tracking frequency with that of the transition from a reactive error-correction mode to a proactive anticipatory mode in the mechanical target tracking experiments. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.
Resumo:
This paper analyze and study a pervasive computing system in a mining environment to track people based on RFID (radio frequency identification) technology. In first instance, we explain the RFID fundamentals and the LANDMARC (location identification based on dynamic active RFID calibration) algorithm, then we present the proposed algorithm combining LANDMARC and trilateration technique to collect the coordinates of the people inside the mine, next we generalize a pervasive computing system that can be implemented in mining, and finally we show the results and conclusions.
Resumo:
For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.
Resumo:
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases.
Resumo:
Northern Hemisphere cyclone activity is assessed by applying an algorithm for the detection and tracking of synoptic scale cyclones to mean sea level pressure data. The method, originally developed for the Southern Hemisphere, is adapted for application in the Northern Hemisphere winter season. NCEP-Reanalysis data from 1958/59 to 1997/98 are used as input. The sensitivities of the results to particular parameters of the algorithm are discussed for both case studies and from a climatological point of view. Results show that the choice of settings is of major relevance especially for the tracking of smaller scale and fast moving systems. With an appropriate setting the algorithm is capable of automatically tracking different types of cyclones at the same time: Both fast moving and developing systems over the large ocean basins and smaller scale cyclones over the Mediterranean basin can be assessed. The climatology of cyclone variables, e.g., cyclone track density, cyclone counts, intensification rates, propagation speeds and areas of cyclogenesis and -lysis gives detailed information on typical cyclone life cycles for different regions. The lowering of the spatial and temporal resolution of the input data from full resolution T62/06h to T42/12h decreases the cyclone track density and cyclone counts. Reducing the temporal resolution alone contributes to a decline in the number of fast moving systems, which is relevant for the cyclone track density. Lowering spatial resolution alone mainly reduces the number of weak cyclones.
Resumo:
The use of Bayesian inference in the inference of time-frequency representations has, thus far, been limited to offline analysis of signals, using a smoothing spline based model of the time-frequency plane. In this paper we introduce a new framework that allows the routine use of Bayesian inference for online estimation of the time-varying spectral density of a locally stationary Gaussian process. The core of our approach is the use of a likelihood inspired by a local Whittle approximation. This choice, along with the use of a recursive algorithm for non-parametric estimation of the local spectral density, permits the use of a particle filter for estimating the time-varying spectral density online. We provide demonstrations of the algorithm through tracking chirps and the analysis of musical data.
Resumo:
A novel two-stage construction algorithm for linear-in-the-parameters classifier is proposed, aiming at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage to construct a sparse linear-in-the-parameters classifier. For the first stage learning of generating the prefiltered signal, a two-level algorithm is introduced to maximise the model's generalisation capability, in which an elastic net model identification algorithm using singular value decomposition is employed at the lower level while the two regularisation parameters are selected by maximising the Bayesian evidence using a particle swarm optimization algorithm. Analysis is provided to demonstrate how “Occam's razor” is embodied in this approach. The second stage of sparse classifier construction is based on an orthogonal forward regression with the D-optimality algorithm. Extensive experimental results demonstrate that the proposed approach is effective and yields competitive results for noisy data sets.
Resumo:
We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shock front as detected by in situ measurements at L1. A time series of mass measurements from the STEREO COR-2A instrument is made along the Earth propagation direction. Qualitatively, this mass time series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a three-dimensional (3-D) magnetospheric space weather simulation from the Community Coordinated Modeling Center. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME, and predictions are made for the time derivative of the magnetic field (dB/dt) on the ground. The predicted dB/dt values were then compared with the observations from specific equatorially located ground stations and showed notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as a preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time series as inputs to magnetospheric simulations.