180 resultados para Neutron scattering and diffraction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advances made over the past decade in structure determination from powder diffraction data are reviewed with particular emphasis on algorithmic developments and the successes and limitations of the technique. While global optimization methods have been successful in the solution of molecular crystal structures, new methods are required to make the solution of inorganic crystal structures more routine. The use of complementary techniques such as NMR to assist structure solution is discussed and the potential for the combined use of X-ray and neutron diffraction data for structure verification is explored. Structures that have proved difficult to solve from powder diffraction data are reviewed and the limitations of structure determination from powder diffraction data are discussed. Furthermore, the prospects of solving small protein crystal structures over the next decade are assessed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of high-energy X-ray total scattering coupled with pair distribution function analysis produces unique structural fingerprints from amorphous and nanostructured phases of the pharmaceuticals carbamazepine and indomethacin. The advantages of such facility-based experiments over laboratory-based ones are discussed and the technique is illustrated with the characterisation of a melt-quenched sample of carbamazepine as a nanocrystalline (4.5 nm domain diameter) version of form III.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gallaborane (GaBH6, 1), synthesized by the metathesis of LiBH4 with [H2GaCl]n at ca. 250 K, has been characterized by chemical analysis and by its IR and 1H and 11B NMR spectra. The IR spectrum of the vapor at low pressure implies the presence of only one species, viz. H2Ga(μ-H)2BH2, with a diborane-like structure conforming to C2v symmetry. The structure of this molecule has been determined by gas-phase electron diffraction (GED) measurements afforced by the results of ab initio molecular orbital calculations. Hence the principal distances (rα in Å) and angles ( α in deg) are as follows: r(Ga•••B), 2.197(3); r(Ga−Ht), 1.555(6); r(Ga−Hb), 1.800(6); r(B−Ht), 1.189(7); r(B−Hb), 1.286(7); Hb−Ga−Hb, 71.6(4); and Hb−B−Hb, 110.0(5) (t = terminal, b = bridging). Aggregation of the molecules occurs in the condensed phases. X-ray crystallographic studies of a single crystal at 110 K reveal a polymeric network with helical chains made up of alternating pseudotetrahedral GaH4 and BH4 units linked through single hydrogen bridges; the average Ga•••B distance is now 2.473(7) Å. The compound decomposes in the condensed phases at temperatures exceeding ca. 240 K with the formation of elemental Ga and H2 and B2H6. The reactions with NH3, Me3N, and Me3P are also described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gas-phase electron diffraction (GED) data together with results from ab initio molecular orbital calculations (HF and MP2/6-311+G(d,p)) have been used to determine the structure of hexamethyldigermane ((CH3)3Ge-Ge(CH3)3). The equilibrium symmetry is D3d, but the molecule has a very low-frequency, largeamplitude, torsional mode (φCGeGeC) that lowers the thermal average symmetry. The effect of this largeamplitude mode on the interatomic distances was described by a dynamic model which consisted of a set of pseudoconformers spaced at even intervals. The amount of each pseudoconformer was obtained from the ab initio calculations (HF/6-311+G(d,p)). The results for the principal distances (ra) and angles (∠h1) obtained from the combined GED/ab initio (with estimated 1σ uncertainties) are r(Ge-Ge) ) 2.417(2) Å, r(Ge-C) ) 1.956(1) Å, r(C-H) ) 1.097(5) Å, ∠GeGeC ) 110.5(2)°, and ∠GeCH ) 108.8(6)°. Theoretical calculations were performed for the related molecules ((CH3)3Si-Si(CH3)3 and (CH3)3C-C(CH3)3).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The yncE gene of Escherichia coli encodes a predicted periplasmic protein of unknown function. The gene is de-repressed under iron restriction through the action of the global iron regulator Fur. This suggests a role in iron acquisition, which is supported by the presence of the adjacent yncD gene encoding a potential TonB-dependent outer-membrane transporter. Here, the preliminary crystallographic structure of YncE is reported, revealing that it consists of a seven-bladed beta-propeller which resembles the corresponding domain of the `surface-layer protein' of Methanosarcina mazei. A full structure determination is under way in order to provide insight into the function of this protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

YcdB is a periplasmic haem-containing protein from Escherichia coli that has a potential role in iron transport. It is currently the only reported haem-containing Tat-secreted substrate. Here, the overexpression, purification, crystallization and structure determination at 2.0 angstrom resolution are reported for the apo form of the protein. The apo-YcdB structure resembles those of members of the haem-dependent peroxidase family and thus confirms that YcdB is also a member of this family. Haem-soaking experiments with preformed apo-YcdB crystals have been optimized to successfully generate haem-containing YcdB crystals that diffract to 2.9 angstrom. Completion of model building and structure refinement are under way.