127 resultados para Neighborhood density
Resumo:
A recent study conducted by Blocken et al. (Numerical study on the existence of the Venturi effect in passages between perpendicular buildings. Journal of Engineering Mechanics, 2008,134: 1021-1028) challenged the popular view of the existence of the ‘Venturi effect’ in building passages as the wind is exposed to an open boundary. The present research extends the work of Blocken et al. (2008a) into a more general setup with the building orientation varying from 0° to 180° using CFD simulations. Our results reveal that the passage flow is mainly determined by the combination of corner streams. It is also shown that converging passages have a higher wind-blocking effect compared to diverging passages, explained by a lower wind speed and higher drag coefficient. Fluxes on the top plane of the passage volume reverse from outflow to inflow in the cases of α=135°, 150° and 165°. A simple mathematical expression to explain the relationship between the flux ratio and the geometric parameters has been developed to aid wind design in an urban neighborhood. In addition, a converging passage with α=15° is recommended for urban wind design in cold and temperate climates since the passage flow changes smoothly and a relatively lower wind speed is expected compared with that where there are no buildings. While for the high-density urban area in (sub)tropical climates such as Hong Kong where there is a desire for more wind, a diverging passage with α=150° is a better choice to promote ventilation at the pedestrian level.
Resumo:
The components of many signaling pathways have been identified and there is now a need to conduct quantitative data-rich temporal experiments for systems biology and modeling approaches to better understand pathway dynamics and regulation. Here we present a modified Western blotting method that allows the rapid and reproducible quantification and analysis of hundreds of data points per day on proteins and their phosphorylation state at individual sites. The approach is of particular use where samples show a high degree of sample-to-sample variability such as primary cells from multiple donors. We present a case study on the analysis of >800 phosphorylation data points from three phosphorylation sites in three signaling proteins over multiple time points from platelets isolated from ten donors, demonstrating the technique's potential to determine kinetic and regulatory information from limited cell numbers and to investigate signaling variation within a population. We envisage the approach being of use in the analysis of many cellular processes such as signaling pathway dynamics to identify regulatory feedback loops and the investigation of potential drug/inhibitor responses, using primary cells and tissues, to generate information about how a cell's physiological state changes over time.
Resumo:
Reproductive ageing is linked to the depletion of ovarian primordial follicles, which causes an irreversible change to ovarian cellular function and the capacity to reproduce. The current study aimed to profile the expression of bone morphogenetic protein receptor, (BMPR1B) in 53 IVF patients exhibiting different degrees of primordial follicle depletion. The granulosa cell receptor density was measured in 403 follicles via flow cytometry. A decline in BMPR1B density occurred at the time of dominant follicle selection and during the terminal stage of folliculogenesis in the 23-30 y good ovarian reserve patients. The 40+ y poor ovarian reserve patients experienced a reversal of this pattern. The results demonstrate an association between age-induced depletion of the ovarian reserve and BMPR1B receptor density at the two critical time points of dominant follicle selection and pre-ovulatory follicle maturation. Dysregulation of BMP receptor signalling may inhibit the normal steroidogenic differentiation required for maturation in older patients.
Resumo:
The urban heat island (UHI) phenomenon has been studied extensively, but there are relatively fewer reports on the so-called urban cool island (UCI) phenomenon. We reveal here that the UCI phenomenon exists in Hong Kong during the day, and is associated with the UHI at night under all wind and cloud conditions. The possible mechanisms for the UCI phenomenon in such a high-rise compact city have been discovered using a lumped urban air temperature model. A new concept of urban cool island degree hours (UCIdh) to measure the UCI intensity and duration is proposed. Our analyses reveal that when anthropogenic heat is small or absent, a high-rise and high-density city experiences a significant daytime UCI effect. This is explained by an intensified heat storage capacity and the reduced solar radiation gain of urban surfaces. However, if anthropogenic heat in the urban area increases further, the UCI phenomenon still exists, yet UCIdh decrease dramatically in a high-rise compact city. In a low-rise, low-density city, the UCI phenomenon also occurs when there is no anthropogenic heat, but easily disappears when there is little anthropogenic heat, and the UHI phenomenon dominates. This probably explains why the UHI phenomenon is often observed, but the UCI phenomenon is rarely observed. The co-existence of urban heat/cool island phenomena implies reduction of the daily temperature range (DTR) in such cities, and its dependence on urban morphology also implies that urban morphology can be used to control the urban thermal environment.
Resumo:
A new sparse kernel density estimator with tunable kernels is introduced within a forward constrained regression framework whereby the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Based on the minimum integrated square error criterion, a recursive algorithm is developed to select significant kernels one at time, and the kernel width of the selected kernel is then tuned using the gradient descent algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing very sparse kernel density estimators with competitive accuracy to existing kernel density estimators.
Resumo:
A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.