143 resultados para Jas. B. Stafford and Brother
Resumo:
Binding to bovine serum albumin of monomeric (vescalagin and pedunculagin) and dimeric ellagitannins (roburin A, oenothein B, and gemin A) was investigated by isothermal titration calorimetry and fluorescence spectroscopy, which indicated two types of binding sites. Stronger and more specific sites exhibited affinity constants, K1, of 104–106 M–1 and stoichiometries, n1, of 2–13 and dominated at low tannin concentrations. Weaker and less-specific binding sites had K2 constants of 103–105 M–1 and stoichiometries, n2, of 16–30 and dominated at higher tannin concentrations. Binding to stronger sites appeared to be dependent on tannin flexibility and the presence of free galloyl groups. Positive entropies for all but gemin A indicated that hydrophobic interactions dominated during complexation. This was supported by an exponential relationship between the affinity, K1, and the modeled hydrophobic accessible surface area and by a linear relationship between K1 and the Stern–Volmer quenching constant, KSV.
Resumo:
Across five experiments, the temporal regularity and content of an irrelevant speech stream were varied and their effects on a serial recall task examined. Variations of the content, but not the rhythm, of the irrelevant speech stimuli reliably disrupted serial recall performance in all experiments. Bayesian analyses supported the null hypothesis over the hypothesis that irregular rhythms would disrupt memory to a greater extent than regular rhythms. Pooling the data in a combined analysis revealed that regular presentation of the irrelevant speech was significantly more disruptive to serial recall than irregular presentation. These results are consistent with the idea that auditory distraction is sensitive to both intra-item and inter-item relations and challenge an orienting-based account of auditory distraction.
Resumo:
Extended cusp-like regions (ECRs) are surveyed, as observed by the Magnetospheric Ion Composition Sensor (MICS) of the Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE) instrument aboard Polar between 1996 and 1999. The first of these ECR events was observed on 29 May 1996, an event widely discussed in the literature and initially thought to be caused by tail lobe reconnection due to the coinciding prolonged interval of strong northward IMF. ECRs are characterized here by intense fluxes of magnetosheath-like ions in the energy-per-charge range of _1 to 10 keV e_1. We investigate the concurrence of ECRs with intervals of prolonged (lasting longer than 1 and 3 hours) orientations of the IMF vector and high solar wind dynamic pressure (PSW). Also investigated is the opposite concurrence, i.e., of the IMF and high PSW with ECRs. (Note that these surveys are asking distinctly different questions.) The former survey indicates that ECRs have no overall preference for any orientation of the IMF. However, the latter survey reveals that during northward IMF, particularly when accompanied by high PSW, ECRs are more likely. We also test for orbital and seasonal effects revealing that Polar has to be in a particular region to observe ECRs and that they occur more frequently around late spring. These results indicate that ECRs have three distinct causes and so can relate to extended intervals in (1) the cusp on open field lines, (2) the magnetosheath, and (3) the magnetopause indentation at the cusp, with the latter allowing magnetosheath plasma to approach close to the Earth without entering the magnetosphere.
Resumo:
An isotope dilution model for partitioning phenylalanine and tyrosine uptake by the mammary gland of the lactating dairy cow is constructed and solved in the steady state. The model contains four intracellular and four extracellular pools and conservation of mass principles are applied to generate the fundamental equations describing the behaviour of the system. The experimental measurements required for model solution are milk secretion and plasma flow rate across the gland in combination with phenylalanine and tyrosine concentrations and plateau isotopic enrichments in arterial and venous plasma and free and protein bound milk during a constant infusion of [1-(13)C]phenylalanine and [2,3,5,6-(2)H]tyrosine tracer. If assumptions are made, model solution enables determination of steady state flows for phenylalanine and tyrosine inflow to the gland, outflow from it and bypass, and flows representing the synthesis and degradation of constitutive protein and hydroxylation. The model is effective in providing information about the fates of phenylalanine and tyrosine in the mammary gland and could be used as part of a more complex system describing amino acid metabolism in the whole ruminant.
Resumo:
We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Tromso and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Alesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened held lines for the observed negative IMF B-y. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward B-z, and explain their morphology in the context of previous theoretical work.
Resumo:
The use of dietary intervention in the elderly in order to beneficially modulate their gut microbiota has not been extensively studied. The influence of two probiotics (Bifidobacterium longum and Lactobacillus fermentum) and two prebiotics [isomaltooligosaccharides (IMO) and short-chain fructooligosaccharides (FOS)], individually and in synbiotic combinations (B. longum with IMO, L. fermentum with FOS) on the gut microbiota of elderly individuals was investigated using faecal batch cultures and three-stage continuous culture systems. Population changes of major bacterial groups were enumerated using fluorescent in situ hybridisation (FISH). B. longum and IMO alone significantly increased the Bifidobacterium count after 5 and 10 h of fermentation and their synbiotic combination significantly decreased the Bacteroides count after 5 h of fermentation. L. fermentum and FOS alone significantly increased the Bifidobacterium count after 10 h and 5, 10 and 24 h of fermentation respectively. B. longum with IMO as well as B. longum and IMO alone significantly increased acetic acid concentration during the fermentation in batch cultures. In the three-stage continuous culture systems, both synbiotic combinations increased the Bifidobacterium and Lactobacillus count in the third vessel representing the distal colon. In addition, the synbiotic combination of L. fermentum with scFOS resulted in a significant increase in the concentration of acetic acid. The results show that the elderly gut microbiota can be modulated in vitro with the appropriate pro-, pre- and synbiotics.
Resumo:
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation–climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America – 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.
Resumo:
In humans and other mammals, Tityus discrepans (Td) scorpion envenomation produces a variety of systemic effects including respiratory distress, a generalized inflammatory reaction, modulation of blood pressure, fibrin formation, and platelet activation. For many of these effects, the venom components and underlying mechanisms are not known. In the present study, we demonstrate that Td venom (TdV) stimulates integrin αIIbβ3-dependent aggregation of washed human and mouse platelets downstream of Src kinase activation. The pattern of increase in tyrosine phosphorylation induced by TdV in human platelets is similar to that induced by the collagen receptor GPVI, and includes FcR γ-chain, Syk, and PLC γ 2. Confirmation of GPVI activation by TdV was achieved by expression of human GPVI in chicken DT40 B cells and use of a reporter assay. To our surprise, TdV was able to activate mouse platelets deficient in the GPVI-FcR γ-chain complex through a pathway that was also dependent on Src kinases. TdV therefore activates platelets through GPVI and a second, as yet unidentified Src kinase-dependent pathway.
Resumo:
The effect of different stages of sewage sludge treatment on phosphorus (P) dynamics in amended soils was determined using samples of undigested liquid (UL), anaerobically digested liquid (AD) and dewatered anaerobically digested (DC) sludge. Sludges were taken from three points in the same treatment stream and applied to a sandy loam soil in field-based mesocosms at 4, 8 and 16t ha−1 dry solids. Mesocosms were sown with perennial ryegrass (Lolium perenne cv. Melle), and the sward was harvested after 35 and 70 days to determine yield and foliar P concentration. Soils were also sampled during this period to measure P transformations and the activities of acid phosphomonoesterase and phosphodiesterase. Data show that the AD amended soils had the greatest plant-available and foliar P content up to the second harvest, but the UL amended soils had the greatest enzyme activity. Characterisation of control and 16t ha−1 soils and sludge using solution 31P nuclear magnetic resonance (NMR) spectroscopy after NaOH–EDTA extraction revealed that P was predominantly in the inorganic pool in all three sludge samples, with the highest proportion (of the total extracted P) as inorganic P in the anaerobically digested liquid sludge. After sludge incorporation, P was immobilised to organic species. The majority of organic P was in monoester-P forms, while the remainder of organic P (diester P and phosphonate P) was more susceptible to transformations through time and showed variation with sludge type. These results show that application of sewage sludge at rates as low as 4t ha−1 can have a significant nutritional benefit to ryegrass over an initial 35-day growth and subsequent 35-day re-growth periods. Differences in P transformation, and hence nutritional benefit, between sludge types were evident throughout the experiment. Thus, differences in sludge treatment process alter the edaphic mineralisation characteristics of biosolids derived from the same source material.
Resumo:
Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox_/_ coronary microvascular cells. Compared with wild-type p47phoxcDNAtransfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2 . production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells.
Resumo:
Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their ‘resilience’) is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin.
Resumo:
BACKGROUND AND OBJECTIVE: Given the role of uncoupling protein 2 (UCP2) in the accumulation of fat in the hepatocytes and in the enhancement of protective mechanisms in acute ethanol intake, we hypothesised that UCP2 polymorphisms are likely to cause liver disease through their interactions with obesity and alcohol intake. To test this hypothesis, we investigated the interaction between tagging polymorphisms in the UCP2 gene (rs2306819, rs599277 and rs659366), alcohol intake and obesity traits such as BMI and waist circumference (WC) on alanine aminotransferase (ALT) and gamma glutamyl transferase (GGT) in a large meta-analysis of data sets from three populations (n=20 242). DESIGN AND METHODS: The study populations included the Northern Finland Birth Cohort 1966 (n=4996), Netherlands Study of Depression and Anxiety (n=1883) and LifeLines Cohort Study (n=13 363). Interactions between the polymorphisms and obesity and alcohol intake on dichotomised ALT and GGT levels were assessed using logistic regression and the likelihood ratio test. RESULTS: In the meta-analysis of the three cohorts, none of the three UCP2 polymorphisms were associated with GGT or ALT levels. There was no evidence for interaction between the polymorphisms and alcohol intake on GGT and ALT levels. In contrast, the association of WC and BMI with GGT levels varied by rs659366 genotype (Pinteraction=0.03 and 0.007, respectively; adjusted for age, gender, high alcohol intake, diabetes, hypertension and serum lipid concentrations). CONCLUSION: In conclusion, our findings in 20 242 individuals suggest that UCP2 gene polymorphisms may cause liver dysfunction through the interaction with body fat rather than alcohol intake.