175 resultados para Interface algorithms
Resumo:
The characteristics of the boundary layer separating a turbulence region from an irrotational (or non-turbulent) flow region are investigated using rapid distortion theory (RDT). The turbulence region is approximated as homogeneous and isotropic far away from the bounding turbulent/non-turbulent (T/NT) interface, which is assumed to remain approximately flat. Inviscid effects resulting from the continuity of the normal velocity and pressure at the interface, in addition to viscous effects resulting from the continuity of the tangential velocity and shear stress, are taken into account by considering a sudden insertion of the T/NT interface, in the absence of mean shear. Profiles of the velocity variances, turbulent kinetic energy (TKE), viscous dissipation rate (epsilon), turbulence length scales, and pressure statistics are derived, showing an excellent agreement with results from direct numerical simulations (DNS). Interestingly, the normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. Outside the turbulent region, where the flow is irrotational (except inside a thin viscous boundary layer), epsilon decays as z^{-6}, where z is the distance from the T/NT interface. The mean pressure distribution is calculated using RDT, and exhibits a decrease towards the turbulence region due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and epsilon display large maxima at the T/NT interface due to the inviscid discontinuities of the tangential velocity variances existing there, and these maxima are quantitatively related to the thickness delta of the viscous boundary layer (VBL). For an equilibrium VBL, the RDT analysis suggests that delta ~ eta (where eta is the Kolmogorov microscale), which is consistent with the scaling law identified in a very recent DNS study for shear-free T/NT interfaces.
Resumo:
Data assimilation algorithms are a crucial part of operational systems in numerical weather prediction, hydrology and climate science, but are also important for dynamical reconstruction in medical applications and quality control for manufacturing processes. Usually, a variety of diverse measurement data are employed to determine the state of the atmosphere or to a wider system including land and oceans. Modern data assimilation systems use more and more remote sensing data, in particular radiances measured by satellites, radar data and integrated water vapor measurements via GPS/GNSS signals. The inversion of some of these measurements are ill-posed in the classical sense, i.e. the inverse of the operator H which maps the state onto the data is unbounded. In this case, the use of such data can lead to significant instabilities of data assimilation algorithms. The goal of this work is to provide a rigorous mathematical analysis of the instability of well-known data assimilation methods. Here, we will restrict our attention to particular linear systems, in which the instability can be explicitly analyzed. We investigate the three-dimensional variational assimilation and four-dimensional variational assimilation. A theory for the instability is developed using the classical theory of ill-posed problems in a Banach space framework. Further, we demonstrate by numerical examples that instabilities can and will occur, including an example from dynamic magnetic tomography.
Resumo:
Rat ileal air interface and submerged explant models were developed and used to compare the adhesion of Salmonella enterica var Enteritidis wild-type strains with that of their isogenic single and multiple deletion mutants. The modified strains studied were defective for fimbriae, flagella, motility or chemotaxis and binding was assessed on tissues with and without an intact mucus layer. A multiple afimbriate/aflagellate (fim(-)/fla(-)) strain, a fimbriate but aflagellate (fla(-)) strain and a fimbriate/flagellate but non-motile (mot(-)) strain bound significantly less extensively to the explants than the corresponding wild-type strains. With the submerged explant model this difference was evident in tissues with or without a mucus layer, whereas in the air interface model it was observed only in tissues,vith an intact mucus layer. A smooth swimming chemotaxis-defective (che(-)) strain and single or multiple afimbriate strains bound to explants as well as their corresponding wild-type strain. This suggests that under the present experimental conditions fimbriae were not essential for attachment of S. enterica var Enteritidis to rat ileal explants, However; the possession of active flagella did appear to be an important factor. in enabling salmonellae to penetrate the gastrointestinal mucus layer and attach specifically to epithelial cells.
Resumo:
In order to assist in comparing the computational techniques used in different models, the authors propose a standardized set of one-dimensional numerical experiments that could be completed for each model. The results of these experiments, with a simplified form of the computational representation for advection, diffusion, pressure gradient term, Coriolis term, and filter used in the models, should be reported in the peer-reviewed literature. Specific recommendations are described in this paper.
Resumo:
This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.
Resumo:
We discuss the modeling of dielectric responses for an electromagnetically excited network of capacitors and resistors using a systems identification framework. Standard models that assume integral order dynamics are augmented to incorporate fractional order dynamics. This enables us to relate more faithfully the modeled responses to those reported in the Dielectrics literature.
Resumo:
This chapter explores some of the implications of adopting a research approach that focuses on people and their livelihoods in the rice-wheat system of the Indo-Gangetic Plains. We draw on information from a study undertaken by the authors in Bangladesh and then consider the transferability of our findings to other situations. We conclude that if our research is to bridge the researcher-farmer interface, ongoing technical research must be supported by research that explores how institutional, policy, and communication strategies determine livelihood outcomes. The challenge that now faces researchers is to move beyond their involvement in participatory research to understand how to facilitate a process in which they provide information and products for others to test. Building capacity at various levels for openness in sharing information and products–seeing research as a public good for all–seems to be a prerequisite for more effective dissemination of the available information and technologies.
Resumo:
Itinerant traders provide an important route for West Africa’s farmers’ to get their perishable produce rapidly to the distant urban markets. But these farmers often accuse the traders of offering “unfairly” low prices while preventing direct access to these markets. Using Ghana’s tomato sector as a case study, we provide the first detailed exploration of the interface between Ghana’s farmers and traders, combining a theoretical model with novel empirical data on daily sales prices and tomato quality. We find that although the prices traders pay farmers are lower than prices in the urban markets, taking into account transport costs, these prices are higher than farmers receive from the local rural market. Our article suggests that policymakers would do better to focus on opening up access to the urban markets rather than on strengthening farmers’ bargaining power with the traders, which restricts market volumes further and harms farmers unable to sell to traders.
Resumo:
With the fast development of the Internet, wireless communications and semiconductor devices, home networking has received significant attention. Consumer products can collect and transmit various types of data in the home environment. Typical consumer sensors are often equipped with tiny, irreplaceable batteries and it therefore of the utmost importance to design energy efficient algorithms to prolong the home network lifetime and reduce devices going to landfill. Sink mobility is an important technique to improve home network performance including energy consumption, lifetime and end-to-end delay. Also, it can largely mitigate the hot spots near the sink node. The selection of optimal moving trajectory for sink node(s) is an NP-hard problem jointly optimizing routing algorithms with the mobile sink moving strategy is a significant and challenging research issue. The influence of multiple static sink nodes on energy consumption under different scale networks is first studied and an Energy-efficient Multi-sink Clustering Algorithm (EMCA) is proposed and tested. Then, the influence of mobile sink velocity, position and number on network performance is studied and a Mobile-sink based Energy-efficient Clustering Algorithm (MECA) is proposed. Simulation results validate the performance of the proposed two algorithms which can be deployed in a consumer home network environment.
Resumo:
Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localized solutions in the form of traveling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyze neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and traveling waves.
Resumo:
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases.
Resumo:
We are sympathetic with Bentley et al’s attempt to encompass the wisdom of crowds in a generative model, but posit that success at using Big Data will include more sensitive measurements, more and more varied sources of information, as well as build from the indirect information available through technology, from ancillary technical features to data from brain-computer interface.