129 resultados para Interannual Variability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensembles of extended Atmospheric Model Intercomparison Project (AMIP) runs from the general circulation models of the National Centers for Environmental Prediction (formerly the National Meteorological Center) and the Max-Planck Institute (Hamburg, Germany) are used to estimate the potential predictability (PP) of an index of the Pacific–North America (PNA) mode of climate change. The PP of this pattern in “perfect” prediction experiments is 20%–25% of the index’s variance. The models, particularly that from MPI, capture virtually all of this variance in their hindcasts of the winter PNA for the period 1970–93. The high levels of internally generated model noise in the PNA simulations reconfirm the need for an ensemble averaging approach to climate prediction. This means that the forecasts ought to be expressed in a probabilistic manner. It is shown that the models’ skills are higher by about 50% during strong SST events in the tropical Pacific, so the probabilistic forecasts need to be conditional on the tropical SST. Taken together with earlier studies, the present results suggest that the original set of AMIP integrations (single 10-yr runs) is not adequate to reliably test the participating models’ simulations of interannual climate variability in the midlatitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a description of the 1979–2002 tropical Atlantic (TA) SST variability modes coupled to the anomalous West African (WA) rainfall during the monsoon season. The time-evolving SST patterns, with an impact on WA rainfall variability, are analyzed using a new methodology based on maximum covariance analysis. The enhanced Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) dataset, which includes measures over the ocean, gives a complete picture of the interannual WA rainfall patterns for the Sahel dry period. The leading TA SST pattern, related to the Atlantic El Niño, is coupled to anomalous precipitation over the coast of the Gulf of Guinea, which corresponds to the second WA rainfall principal component. The thermodynamics and dynamics involved in the generation, development, and damping of this mode are studied and compared with previous works. The SST mode starts at the Angola/Benguela region and is caused by alongshore wind anomalies. It then propagates westward via Rossby waves and damps because of latent heat flux anomalies and Kelvin wave eastward propagation from an off-equatorial forcing. The second SST mode includes the Mediterranean and the Atlantic Ocean, showing how the Mediterranean SST anomalies are those that are directly associated with the Sahelian rainfall. The global signature of the TA SST patterns is analyzed, adding new insights about the Pacific– Atlantic link in relation to WA rainfall during this period. Also, this global picture suggests that the Mediterranean SST anomalies are a fingerprint of large-scale forcing. This work updates the results given by other authors, whose studies are based on different datasets dating back to the 1950s, including both the wet and the dry Sahel periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the main differences in simulations of stratospheric climate and variability by models within the fifth Coupled Model Intercomparison Project (CMIP5) that have a model top above the stratopause and relatively fine stratospheric vertical resolution (high-top), and those that have a model top below the stratopause (low-top). Although the simulation of mean stratospheric climate by the two model ensembles is similar, the low-top model ensemble has very weak stratospheric variability on daily and interannual time scales. The frequency of major sudden stratospheric warming events is strongly underestimated by the low-top models with less than half the frequency of events observed in the reanalysis data and high-top models. The lack of stratospheric variability in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric impacts, as seen in observations. The lack of stratospheric variability, however, does not appear to have any impact on the ability of the low-top models to reproduce past stratospheric temperature trends. We find little improvement in the simulation of decadal variability for the high-top models compared to the low-top, which is likely related to the fact that neither ensemble produces a realistic dynamical response to volcanic eruptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Centennial-scale records of sea-surface temperature and opal composition spanning the Last Glacial Maximum and Termination 1 (circa 25–6 ka) are presented here from Guaymas Basin in the Gulf of California. Through the application of two organic geochemistry proxies, the U37K′ index and the TEX86H index, we present evidence for rapid, stepped changes in temperatures during deglaciation. These occur in both temperature proxies at 13 ka (∼3°C increase in 270 years), 10.0 ka (∼2°C decrease over ∼250 years) and at 8.2 ka (3°C increase in <200 years). An additional rapid warming step is also observed in TEX86H at 11.5 ka. In comparing the two temperature proxies and opal content, we consider the potential for upwelling intensity to be recorded and link this millennial-scale variability to shifting Intertropical Convergence Zone position and variations in the strength of the Subtropical High. The onset of the deglacial warming from 17 to 18 ka is comparable to a “southern hemisphere” signal, although the opal record mimics the ice-rafting events of the north Atlantic (Heinrich events). Neither the modern seasonal cycle nor El Niño/Southern Oscillation patterns provide valid analogues for the trends we observe in comparison with other regional records. Fully coupled climate model simulations confirm this result, and in combination we question whether the seasonal or interannual climate variations of the modern climate are valid analogues for the glacial and deglacial tropical Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated mechanisms for the Atlantic Meridional Overturning Circulation (AMOC) variability at 26.5° N (other than the Ekman component) that can be related to external forcings, in particular wind variability. Resolution dependence is studied using identical experiments with 1° and 1/4° NEMO model runs over 1960–2010. The analysis shows that much of the variability in the AMOC at 26° N can be related to the wind strength over the North Atlantic, through mechanisms lagged on different timescales. At ~ 1-year lag the January–June difference of mean sea level pressure between high and mid-latitudes in the North Atlantic explains 35–50% of the interannual AMOC variability (with negative correlation between wind strength and AMOC). At longer lead timescales ~ 4 years, strong (weak) winds over the northern North Atlantic (specifically linked to the NAO index) are followed by higher (lower) AMOC transport, but this mechanism only works in the 1/4° model. Analysis of the density correlations suggests an increase (decrease) in deep water formation in the North Atlantic subpolar gyre to be the cause. Therefore another 30% of the AMOC variability at 26° N can be related to density changes in the top 1000 m in the Labrador and Irminger seas occurring ~ 4 years earlier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The England and Wales precipitation (EWP) dataset is a homogeneous time series of daily accumulations from 1931 to 2014, composed from rain gauge observations spanning the region. The daily regional-average precipitation statistics are shown to be well described by a Weibull distribution, which is used to define extremes in terms of percentiles. Computed trends in annual and seasonal precipitation are sensitive to the period chosen, due to large variability on interannual and decadal timescales. Atmospheric circulation patterns associated with seasonal precipitation variability are identified. These patterns project onto known leading modes of variability, all of which involve displacements of the jet stream and storm-track over the eastern Atlantic. The intensity of daily precipitation for each calendar season is investigated by partitioning all observations into eight intensity categories contributing equally to the total precipitation in the dataset. Contrary to previous results based on shorter periods, no significant trends of the most intense categories are found between 1931 and 2014. The regional-average precipitation is found to share statistical properties common to the majority of individual stations across England and Wales used in previous studies. Statistics of the EWP data are examined for multi-day accumulations up to 10 days, which are more relevant for river flooding. Four recent years (2000, 2007, 2008 and 2012) have a greater number of extreme events in the 3-and 5-day accumulations than any previous year in the record. It is the duration of precipitation events in these years that is remarkable, rather than the magnitude of the daily accumulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variability and trends in seasonal and interannual ice area export out of the Laptev Sea between 1992 and 2011 are investigated using satellite-based sea ice drift and concentration data. We found an average total winter (Octo- ber to May) ice area transport across the northern and east- ern Laptev Sea boundaries (NB and EB) of 3.48 × 10 5 km 2 . The average transport across the NB (2.87 × 10 5 km 2 ) is thereby higher than across the EB (0.61 × 10 5 km 2 ), with a less pronounced seasonal cycle. The total Laptev Sea ice area flux significantly increased over the last decades (0.85 × 10 5 km 2 decade − 1 , p> 0 . 95), dominated by increas- ing export through the EB (0.55 × 10 5 km 2 decade − 1 , p> 0 . 90), while the increase in export across the NB is smaller (0.3 × 10 5 km 2 decade − 1 ) and statistically not significant. The strong coupling between across-boundary SLP gradient and ice drift velocity indicates that monthly variations in ice area flux are primarily controlled by changes in geostrophic wind velocities, although the Laptev Sea ice circulation shows no clear relationship with large-scale atmospheric in- dices. Also there is no evidence of increasing wind velocities that could explain the overall positive trends in ice export. The increased transport rates are rather the consequence of a changing ice cover such as thinning and/or a decrease in con- centration. The use of a back-propagation method revealed that most of the ice that is incorporated into the Transpolar Drift is formed during freeze-up and originates from the cen- tral and western part of the Laptev Sea, while the exchange with the East Siberian Sea is dominated by ice coming from the central and southeastern Laptev Sea. Furthermore, our re- sults imply that years of high ice export in late winter (Febru- ary to May) have a thinning effect on the ice cover, which in turn preconditions the occurence of negative sea ice extent anomalies in summer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polynyas in the Laptev Sea are examined with respect to recurrence and interannual wintertime ice production.We use a polynya classification method based on passive microwave satellite data to derive daily polynya area from long-term sea-ice concentrations. This provides insight into the spatial and temporal variability of open-water and thin-ice regions on the Laptev Sea Shelf. Using thermal infrared satellite data to derive an empirical thin-ice distribution within the thickness range from 0 to 20 cm, we calculate daily average surface heat loss and the resulting wintertime ice formation within the Laptev Sea polynyas between 1979 and 2008 using reanalysis data supplied by the National Centers for Environmental Prediction, USA, as atmospheric forcing. Results indicate that previous studies significantly overestimate the contribution of polynyas to the ice production in the Laptev Sea. Average wintertime ice production in polynyas amounts to approximately 55 km39 27% and is mostly determined by the polynya area, wind speed and associated large-scale circulation patterns. No trend in ice production could be detected in the period from 1979/80 to 2007/08.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observations and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NA SPG), though observations are sparse and models disagree on the details of this variability. Therefore, it is important to understand 1) the mechanisms of simulated decadal variability, 2) which parts of simulated variability are more faithful representations of reality, and 3) the implications for climate predictions. Here, we investigate the decadal variability in the NA SPG in the state-of-the-art, high resolution (0.25◦ ocean resolution), climate model ‘HadGEM3’. We find a decadal mode with a period of 17 years that explains 30% of the annual variance in related indices. The mode arises due to the advection of heat content anomalies, and shows asymmetries in the timescale of phase reversal between positive and negative phases. A negative feedback from temperature-driven density anomalies in the Labrador Sea (LS) allows for the phase reversal. The North Atlantic Oscillation (NAO), which exhibits the same periodicity, amplifies the mode. The atmosphere-ocean coupling is stronger during positive rather than negative NAO states, explaining the asymmetry. Within the NA SPG, there is potential predictability arising partly from this mode for up to 5 years. There are important similarities between observed and simulated variability, such as the apparent role for the propagation of heat content anomalies. However, observations suggest interannual LS density anomalies are salinity-driven. Salinity control of density would change the temperature feedback to the south, possibly limiting real-world predictive skill in the southern NA SPG with this model. Finally, to understand the diversity of behaviours, we analyse 42 present-generation climate models. Temperature and salinity biases are found to systematically influence the driver of density variability in the LS. Resolution is a good predictor of the biases. The dependence of variability on the background state has important implications for decadal predictions.