123 resultados para Incidental parameter bias
Resumo:
Task relevance affects emotional attention in healthy individuals. Here, we investigate whether the association between anxiety and attention bias is affected by the task relevance of emotion during an attention task. Participants completed two visual search tasks. In the emotion-irrelevant task, participants were asked to indicate whether a discrepant face in a crowd of neutral, middle-aged faces was old or young. Irrelevant to the task, target faces displayed angry, happy, or neutral expressions. In the emotion-relevant task, participants were asked to indicate whether a discrepant face in a crowd of middle-aged neutral faces was happy or angry (target faces also varied in age). Trait anxiety was not associated with attention in the emotion-relevant task. However, in the emotion-irrelevant task, trait anxiety was associated with a bias for angry over happy faces. These findings demonstrate that the task relevance of emotional information affects conclusions about the presence of an anxiety-linked attention bias.
Resumo:
Individuals with Williams syndrome (WS) often experience significant anxiety. A promising approach to anxiety intervention has emerged from cognitive studies of attention bias to threat. To investigate the utility of this intervention in WS, this study examined attention bias to happy and angry faces in individuals with WS (N=46). Results showed a significant difference in attention bias patterns as a function of IQ and anxiety. Individuals with higher IQ or higher anxiety showed a significant bias toward angry, but not happy faces, whereas individuals with lower IQ or lower anxiety showed the opposite pattern. These results suggest that attention bias interventions to modify a threat bias may be most effectively targeted to anxious individuals with WS with relatively high IQ.
Resumo:
The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed.