157 resultados para Implicit difference approximation
Resumo:
The validity of approximating radiative heating rates in the middle atmosphere by a local linear relaxation to a reference temperature state (i.e., ‘‘Newtonian cooling’’) is investigated. Using radiative heating rate and temperature output from a chemistry–climate model with realistic spatiotemporal variability and realistic chemical and radiative parameterizations, it is found that a linear regressionmodel can capture more than 80% of the variance in longwave heating rates throughout most of the stratosphere and mesosphere, provided that the damping rate is allowed to vary with height, latitude, and season. The linear model describes departures from the climatological mean, not from radiative equilibrium. Photochemical damping rates in the upper stratosphere are similarly diagnosed. Threeimportant exceptions, however, are found.The approximation of linearity breaks down near the edges of the polar vortices in both hemispheres. This nonlinearity can be well captured by including a quadratic term. The use of a scale-independentdamping rate is not well justified in the lower tropical stratosphere because of the presence of a broad spectrum of vertical scales. The local assumption fails entirely during the breakup of the Antarctic vortex, where large fluctuations in temperature near the top of the vortex influence longwave heating rates within the quiescent region below. These results are relevant for mechanistic modeling studies of the middle atmosphere, particularly those investigating the final Antarctic warming.
Resumo:
This chapter looks into the gap between presentational realism and the representation of physical experience in Werner Herzog's work so as to retrieve the indexical trace – or the absolute materiality of death. To that end, it draws links between Herzog and other directors akin to realism in its various forms, including surrealism. In particular, it focuses on François Truffaut and Glauber Rocha, representing respectively the Nouvelle Vague and the Cinema Novo, whose works had a decisive weight on Herzog’s aesthetic choices to the point of originating distinct phases of his outputs. The analyses, though restricted to a small number of films, intends to re-evaluate Herzog’s position within, and contribution to, film history.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
Many operational weather forecasting centres use semi-implicit time-stepping schemes because of their good efficiency. However, as computers become ever more parallel, horizontally explicit solutions of the equations of atmospheric motion might become an attractive alternative due to the additional inter-processor communication of implicit methods. Implicit and explicit (IMEX) time-stepping schemes have long been combined in models of the atmosphere using semi-implicit, split-explicit or HEVI splitting. However, most studies of the accuracy and stability of IMEX schemes have been limited to the parabolic case of advection–diffusion equations. We demonstrate how a number of Runge–Kutta IMEX schemes can be used to solve hyperbolic wave equations either semi-implicitly or HEVI. A new form of HEVI splitting is proposed, UfPreb, which dramatically improves accuracy and stability of simulations of gravity waves in stratified flow. As a consequence it is found that there are HEVI schemes that do not lose accuracy in comparison to semi-implicit ones. The stability limits of a number of variations of trapezoidal implicit and some Runge–Kutta IMEX schemes are found and the schemes are tested on two vertical slice cases using the compressible Boussinesq equations split into various combinations of implicit and explicit terms. Some of the Runge–Kutta schemes are found to be beneficial over trapezoidal, especially since they damp high frequencies without dropping to first-order accuracy. We test schemes that are not formally accurate for stiff systems but in stiff limits (nearly incompressible) and find that they can perform well. The scheme ARK2(2,3,2) performs the best in the tests.
Resumo:
This article reports on an ethnographic study involving the literacy practices of two multilingual Chinese children from two similar yet different cultural and linguistic contexts: Montreal and Singapore. Using syncretism as a theoretical tool, this inquiry examines how family environment and support facilitate children’s process of becoming literate in multiple languages. Informed by sociocultural theory, the inquiry looks in particular at the role of grandparents in the syncretic literacy practices of children. Through comparative analysis, the study reveals similarities and differences that, when considered together, contribute to our understanding of multilingual children’s creative forms of learning with regard to their rich literacy resources in multiple languages, the imperceptible influences of mediators, various learning styles and syncretic literacy practices.
Resumo:
In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.
Resumo:
We present the first empirical study to reveal the presence of implicit discrimination in a non-experimental setting. By using a large dataset of in-match data in the English Premier League, we show that white referees award significantly more yellow cards against non-white players of oppositional identity. We argue that this is the result of implicit discrimination by showing that this discriminatory behaviour: (i) increases in how rushed the referee is before making a decision, and (ii) it increases in the level of ambiguity of the decision. The variation in (i) and (ii) cannot be explained by any form of conscious discrimination such as taste-based or statistical discrimination. Moreover, we show that oppositional identity players do not differ in their behaviour from other players along several dimensions related to aggressiveness and style of play providing further evidence that this is not statistical discrimination.
Resumo:
This paper addresses issues raised in two recent papers published in this journal about the UK Association of Business Schools' Journal Quality Guide (ABS Guide). While much of the debate about journal rankings in general, and the ABS Guide in particular, has focused on the construction, power and (mis)use of these rankings, this paper differs in that it explains and provides evidence about explicit and implicit biases in the ABS Guide. In so doing, it poses potentially difficult questions that the editors of the ABS Guide need to address and urgently rectify if the ABS Guide seeks to build and retain legitimacy. In particular, the evidence in this paper shows explicit bias in the ABS Guide against several subject areas, including accounting and finance. It also shows implicit bias against accounting and finance when comparing journal rankings in sub-areas shared between accounting and finance and the broader business management subject areas.
Resumo:
Although difference-stationary (DS) and trend-stationary (TS) processes have been subject to considerable analysis, there are no direct comparisons for each being the data-generation process (DGP). We examine incorrect choice between these models for forecasting for both known and estimated parameters. Three sets of Monte Carlo simulations illustrate the analysis, to evaluate the biases in conventional standard errors when each model is mis-specified, compute the relative mean-square forecast errors of the two models for both DGPs, and investigate autocorrelated errors, so both models can better approximate the converse DGP. The outcomes are surprisingly different from established results.
Resumo:
A potential problem with Ensemble Kalman Filter is the implicit Gaussian assumption at analysis times. Here we explore the performance of a recently proposed fully nonlinear particle filter on a high-dimensional but simplified ocean model, in which the Gaussian assumption is not made. The model simulates the evolution of the vorticity field in time, described by the barotropic vorticity equation, in a highly nonlinear flow regime. While common knowledge is that particle filters are inefficient and need large numbers of model runs to avoid degeneracy, the newly developed particle filter needs only of the order of 10-100 particles on large scale problems. The crucial new ingredient is that the proposal density cannot only be used to ensure all particles end up in high-probability regions of state space as defined by the observations, but also to ensure that most of the particles have similar weights. Using identical twin experiments we found that the ensemble mean follows the truth reliably, and the difference from the truth is captured by the ensemble spread. A rank histogram is used to show that the truth run is indistinguishable from any of the particles, showing statistical consistency of the method.
Resumo:
We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a delta-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on delta. We apply the obtained estimates to show exponential convergence with rate O(exp(−b square root N)), N being the number of degrees of freedom and b>0, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate O(exp(−b cubic root N )), and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces.
Resumo:
In probabilistic decision tasks, an expected value (EV) of a choice is calculated, and after the choice has been made, this can be updated based on a temporal difference (TD) prediction error between the EV and the reward magnitude (RM) obtained. The EV is measured as the probability of obtaining a reward x RM. To understand the contribution of different brain areas to these decision-making processes, functional magnetic resonance imaging activations related to EV versus RM (or outcome) were measured in a probabilistic decision task. Activations in the medial orbitofrontal cortex were correlated with both RM and with EV and confirmed in a conjunction analysis to extend toward the pregenual cingulate cortex. From these representations, TD reward prediction errors could be produced. Activations in areas that receive from the orbitofrontal cortex including the ventral striatum, midbrain, and inferior frontal gyrus were correlated with the TD error. Activations in the anterior insula were correlated negatively with EV, occurring when low reward outcomes were expected, and also with the uncertainty of the reward, implicating this region in basic and crucial decision-making parameters, low expected outcomes, and uncertainty.
Resumo:
The time discretization in weather and climate models introduces truncation errors that limit the accuracy of the simulations. Recent work has yielded a method for reducing the amplitude errors in leapfrog integrations from first-order to fifth-order. This improvement is achieved by replacing the Robert--Asselin filter with the RAW filter and using a linear combination of the unfiltered and filtered states to compute the tendency term. The purpose of the present paper is to apply the composite-tendency RAW-filtered leapfrog scheme to semi-implicit integrations. A theoretical analysis shows that the stability and accuracy are unaffected by the introduction of the implicitly treated mode. The scheme is tested in semi-implicit numerical integrations in both a simple nonlinear stiff system and a medium-complexity atmospheric general circulation model, and yields substantial improvements in both cases. We conclude that the composite-tendency RAW-filtered leapfrog scheme is suitable for use in semi-implicit integrations.