127 resultados para Flowering events


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El Niño events are a prominent feature of climate variability with global climatic impacts. The 1997/98 episode, often referred to as ‘the climate event of the twentieth century’1, 2, and the 1982/83 extreme El Niño3, featured a pronounced eastward extension of the west Pacific warm pool and development of atmospheric convection, and hence a huge rainfall increase, in the usually cold and dry equatorial eastern Pacific. Such a massive reorganization of atmospheric convection, which we define as an extreme El Niño, severely disrupted global weather patterns, affecting ecosystems4, 5, agriculture6, tropical cyclones, drought, bushfires, floods and other extreme weather events worldwide3, 7, 8, 9. Potential future changes in such extreme El Niño occurrences could have profound socio-economic consequences. Here we present climate modelling evidence for a doubling in the occurrences in the future in response to greenhouse warming. We estimate the change by aggregating results from climate models in the Coupled Model Intercomparison Project phases 3 (CMIP3; ref. 10) and 5 (CMIP5; ref. 11) multi-model databases, and a perturbed physics ensemble12. The increased frequency arises from a projected surface warming over the eastern equatorial Pacific that occurs faster than in the surrounding ocean waters13, 14, facilitating more occurrences of atmospheric convection in the eastern equatorial region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The precipitating role of life events in the onset of depression is well-established. The present study sought to examine whether life events hypothesised to be personally salient would be more strongly associated with depression than other life events. In a sample of women making the first transition to parenthood, we hypothesised that negative events related to the partner relationship would be particularly salient and thus more strongly predictive of depression than other events. Methods A community-based sample of 316 first-time mothers stratified by psychosocial risk completed interviews at 32 weeks gestation and 29 weeks postpartum to assess dated occurrence of life events and depression onsets from conception to 29 weeks postpartum. Complete data was available from 273 (86.4%). Cox proportional hazards regression was used to examine risk for onset of depression in the 6 months following a relationship event versus other events, after accounting for past history of depression and other potential confounders. Results 52 women (19.0%) experienced an onset of depression between conception and 6 months postpartum. Both relationship events (Hazard Ratio = 2.1, p = .001) and other life events (Hazard Ratio = 1.3, p = .020) were associated with increased risk for depression onset; however, relationship events showed a significantly greater risk for depression than did other life events (p = .044). Conclusions The results are consistent with the hypothesis that personally salient events are more predictive of depression onset than other events. Further, they indicate the clinical significance of events related to the partner relationship during pregnancy and the postpartum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flowering and successful pollination in wheat are key determinants of both quantity and quality of grain. Bread wheat line ‘Paragon’, introgressed with single or multiple day length insensitivity alleles was used to dissect the effects on the timing and duration of flowering within a hierarchical plant architecture. Flowering of wheat plants was observed in a series of pot-based and field experiments. Ppd-D1a was the most potent known allele affecting the timing of flowering, requiring the least thermal time to flowering across all experiments. The duration of flowering for individual lines was dominated by the shift in the start of flowering in later tillers and the number of tillers per plant, rather than variation in flowering duration of individual spikes. There was a strong relationship between flowering duration and the start of flowering with the earliest lines flowering for the longest. The greatest flowering overlap between tillers was recorded for the Ppd-1b. Across all lines, a warmer environment significantly reduced the duration of flowering and the influence of Ppd-1a alleles on the start of flowering. These findings provide evidence of pleiotropic effects of the Ppd-1a alleles, and have direct implications for breeding for increased stress resilient wheat varieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projected impacts of climate change on the populations and distributions of species pose a challenge for conservationists. In response, a number of adaptation strategies to enable species to persist in a changing climate have been proposed. Management to maximise the quality of habitat at existing sites may reduce the magnitude or frequency of climate-driven population declines. In addition large-scale management of landscapes could potentially improve the resilience of populations by facilitating inter-population movements. A reduction in the obstacles to species’ range expansion, may also allow species to track changing conditions better through shifts to new locations, either regionally or locally. However, despite a strong theoretical base, there is limited empirical evidence to support these management interventions. This makes it difficult for conservationists to decide on the most appropriate strategy for different circumstances. Here extensive data from long-term monitoring of woodland birds at individual sites are used to examine the two-way interactions between habitat and both weather and population count in the previous year. This tests the extent to which site-scale and landscape-scale habitat attributes may buffer populations against variation in winter weather (a key driver of woodland bird population size) and facilitate subsequent population growth. Our results provide some support for the prediction that landscape-scale attributes (patch isolation and area of woodland habitat) may influence the ability of some woodland bird species to withstand weather-mediated population declines. These effects were most apparent among generalist woodland species. There was also evidence that several, primarily specialist, woodland species are more likely to increase following population decline where there is more woodland at both site and landscape scales. These results provide empirical support for the concept that landscape-scale conservation efforts may make the populations of some woodland bird species more resilient to climate change. However in isolation, management is unlikely to provide a universal benefit to all species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential impact of the abrupt 8.2 ka cold event on human demography, settlement patterns and culture in Europe and the Near East has emerged as a key theme in current discussion and debate. We test whether this event had an impact on the Mesolithic population of western Scotland, a case study located within the North Atlantic region where the environmental impact of the 8.2 ka event is likely to have been the most severe. By undertaking a Bayesian analysis of the radiocarbon record and using the number of activity events as a proxy for the size of the human population, we find evidence for a dramatic reduction in the Mesolithic population synchronous with the 8.2 ka event. We interpret this as reflecting the demographic collapse of a low density population that lacked the capability to adapt to the rapid onset of new environmental conditions. This impact of the 8.2 ka event in the North Atlantic region lends credence to the possibility of a similar impact on populations in Continental Europe and the Near East.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intense extra-tropical cyclones are often associated with strong winds, heavy precipitation and socio-economic impacts. Over southwestern Europe, such storms occur less often, but still cause high economic losses. We characterise the largescale atmospheric conditions and cyclone tracks during the top-100 potential losses over Iberia associated with wind events. Based on 65 years of reanalysis data,events are classified into four groups: (i) cyclone tracks crossing over Iberia on the event day (“Iberia”), (ii) cyclones crossing further north, typically southwest of the British Isles (“North”), (iii) cyclones crossing southwest to northeast near the northwest tip of Iberia (“West”), and (iv) so called “Hybrids”, characterised by a strong pressure gradient over Iberia due to the juxtaposition of low and high pressure centres. Generally, “Iberia” events are the most frequent (31% to 45% for top-100 vs.top-20), while “West” events are rare (10% to 12%). 70% of the events were primarily associated with a cyclone. Multi-decadal variability in the number of events is identified. While the peak in recent years is quite prominent, other comparably stormy periods occurred in the 1960s and 1980s. This study documents that damaging wind storms over Iberia are not rare events, and their frequency of occurrence undergoes strong multi-decadal variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.