254 resultados para FAR-INFRARED ABSORPTION
Resumo:
Recent reports have demonstrated various cardiovascular and neurological benefits associated with the consumption of foods rich in anthocyanidins. However, information regarding absorption, metabolism, and especially, tissue distribution are only beginning to accumulate. In the present study, we investigated the occurrence and the kinetics of various circulating pelargonidin metabolites, and we aimed at providing initial information with regard to tissue distribution. Based on HPLC and LC-MS analyses we demonstrate that pelargonidin is absorbed and present in plasma following oral gavage to rats. In addition, the main structurally related pelargonidin metabolite identified in plasma and urine was pelargonidin glucuronide. Furthermore, p-hydroxybenzoic acid, a ring fission product of pelargonidin, was detected in plasma and urine samples obtained at 2 and 18 h after ingestion. At 2 h post-gavage, pelargonidin glucuronide was the major metabolite detected in kidney and liver, with levels reaching 0.5 and 0.15 nmol pelargonidin equivalents/g tissue, respectively. Brain and lung tissues contained detectable levels of the aglycone, with the glucuronide also present in the lungs. Other tissues, including spleen and heart, did not contain detectable levels of pelargonidin or ensuing metabolites. At 18 h post-gavage, tissue analyses did not reveal detectable levels of the aglycone nor of pelargonidin glucuronides. Taken together, our results demonstrate that the overall uptake of the administered pelargonidin was 18 % after 2 h, with the majority of the detected levels located in the stomach. However, the amounts recovered dropped to 1.2 % only 18 h post-gavage, with the urine and faecal content constituting almost 90 % of the total recovered pelargonidin.
Resumo:
If soy isoflavones are to be effective in preventing or treating a range of diseases, they must be bioavailable, and thus understanding factors which may alter their bioavailability needs to be elucidated. However, to date there is little information on whether the pharmacokinetic profile following ingestion of a defined dose is influenced by the food matrix in which the isoflavone is given or by the processing method used. Three different foods (cookies, chocolate bars and juice) were prepared, and their isoflavone contents were determined. We compared the urinary and serum concentrations of daidzein, genistein and equol following the consumption of three different foods, each of which contained 50 mg of isoflavones. After the technological processing of the different test foods, differences in aglycone levels were observed. The plasma levels of the isoflavone precursor daidzein were not altered by food matrix. Urinary daidzein recovery was similar for all three foods ingested with total urinary output of 33-34% of ingested dose. Peak genistein concentrations were attained in serum earlier following consumption of a liquid matrix rather than a solid matrix, although there was a lower total urinary recovery of genistein following ingestion of juice than that of the two other foods. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Olive oil, a typical ingredient of the Mediterranean diet, possesses many beneficial health effects. The biological activities ascribed to olive oil consumption are associated in part to its phenolics constituents, and mainly linked to the direct or indirect antioxidant activity of olive oil phenolics and their metabolites, which are exerted more efficiently in the gastrointestinal (GI) tract, where dietary phenolics are more concentrated when compared to other organs. In this regard, we present a brief overview of the metabolism, biological activities, and anticancer properties of olive oil phenolics in the GI tract. Toxicology and Industrial Health 2009; 25: 285-293.
Resumo:
Several studies have highlighted the importance of the cooling period in oil absorption in deep-fat fried products. Specifically, it has been established that the largest proportion of oil which ends up into the food, is sucked into the porous crust region after the fried product is removed from the oil bath, stressing the importance of this time interval. The main objective of this paper was to develop a predictive mechanistic model that can be used to understand the principles behind post-frying cooling oil absorption kinetics, which can also help identifying the key parameters that affect the final oil intake by the fried product. The model was developed for two different geometries, an infinite slab and an infinite cylinder, and was divided into two main sub-models, one describing the immersion frying period itself and the other describing the post-frying cooling period. The immersion frying period was described by a transient moving-front model that considered the movement of the crust/core interface, whereas post-frying cooling oil absorption was considered to be a pressure driven flow mediated by capillary forces. A key element in the model was the hypothesis that oil suction would only begin once a positive pressure driving force had developed. The mechanistic model was based on measurable physical and thermal properties, and process parameters with no need of empirical data fitting, and can be used to study oil absorption in any deep-fat fried product that satisfies the assumptions made.
Resumo:
The mathematical models that describe the immersion-frying period and the post-frying cooling period of an infinite slab or an infinite cylinder were solved and tested. Results were successfully compared with those found in the literature or obtained experimentally, and were discussed in terms of the hypotheses and simplifications made. The models were used as the basis of a sensitivity analysis. Simulations showed that a decrease in slab thickness and core heat capacity resulted in faster crust development. On the other hand, an increase in oil temperature and boiling heat transfer coefficient between the oil and the surface of the food accelerated crust formation. The model for oil absorption during cooling was analysed using the tested post-frying cooling equation to determine the moment in which a positive pressure driving force, allowing oil suction within the pore, originated. It was found that as crust layer thickness, pore radius and ambient temperature decreased so did the time needed to start the absorption. On the other hand, as the effective convective heat transfer coefficient between the air and the surface of the slab increased the required cooling time decreased. In addition, it was found that the time needed to allow oil absorption during cooling was extremely sensitive to pore radius, indicating the importance of an accurate pore size determination in future studies.
Resumo:
The oil-absorption capacity of different restructured potato chips during deep-fat frying was investigated. Low-leach potato flake was chosen as the major ingredient, whereas native and pregelatinized potato starches were studied as complementary ingredients. Results showed that off absorption increased significantly when reducing product thickness in all products. Interestingly, it was found that the product containing native potato starch as an ingredient picked up the lowest amount of on when sheeted into a thick chip, whereas it absorbed the largest amount of oil when sheeted into a thin chip. Those findings were mainly attributed to crust microstructure development as revealed by electron microscopy and confocal microscopy.
Resumo:
Analysis of the oil-absorption process in deep-fat fried potato cylinders (frying temperatures of 155degreesC, 170degreesC, and 185degreesC) allowed to distinguish 3 oil fractions: structural oil (absorbed during frying), penetrated surface oil (suctioned during cooling), and surface oil. Results showed that a small amount of oil penetrates during frying because most of the oil was picked up at the end of the process, suggesting that oil uptake and water removal are not synchronous phenomena. After cooling, oil was located either on the surface of the chip or suctioned into the porous crust microstructure, with an inverse relationship between them for increasing frying times.
Resumo:
A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbarnyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 mu m ODS (C-18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min(-1) and the column temperature was maintained at 30 degrees C Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32 +/- 1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15 +/- 0.1 cm(2). The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1 % v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 mu g ml(-1). The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) < 12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <=-5.60 and <=-8.00, respectively. Using this assay, it was found that GL-HCI permeates through human skin with a flux 1.497 +/- 0.42 mu g cm(-2) h(-1), a permeability coefficient of 5.66 +/- 1.6 x 10(-6) cm h(-1) and with a lag time of 10.9 +/- 4.6 h. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Modal filtering is based on the capability of single-mode waveguides to transmit only one complex amplitude function to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible in a nulling interferometer. In the present paper we focus on the progress of Integrated Optics in the thermal infrared [6-20 mu m] range, one of the two candidate technologies for the fabrication of Modal Filters, together with fiber optics. In conclusion of the European Space Agency's (ESA) "Integrated Optics for Darwin" activity, etched layers of clialcogenide material deposited on chalcogenide glass substrates was selected among four candidates as the technology with the best potential to simultaneously meet the filtering efficiency, absolute and spectral transmission, and beam coupling requirements. ESA's new "Integrated Optics" activity started at mid-2007 with the purpose of improving the technology until compliant prototypes can be manufactured and validated, expectedly by the end of 2009. The present paper aims at introducing the project and the components requirements and functions. The selected materials and preliminary designs, as well as the experimental validation logic and test benches are presented. More details are provided on the progress of the main technology: vacuum deposition in the co-evaporation mode and subsequent etching of chalcogenide layers. In addition., preliminary investigations of an alternative technology based on burying a chalcogenide optical fiber core into a chalcogenide substrate are presented. Specific developments of anti-reflective solutions designed for the mitigation of Fresnel losses at the input and output surface of the components are also introduced.
Resumo:
The VISIR instrument for the European Southern Observatory (ESO) Very Large Telescope (VLT) is a thermal-infrared imager and spectrometer currently being developed by the French Service d'Astrophysique of CEA Saclay, and Dutch NFRA ASTRON Dwingeloo consortium. This cryogenic instrument will employ precision infrared bandpass filters in the N-( =7.5-14µm) and Q-( =16-28µm) band mid-IR atmospheric windows to study interstellar and circumstellar environments crucial for star and planetary formation theories. As the filters in these mid-IR wavelength ranges are of interest to many astronomical cryogenic instruments, a worldwide astronomical filter consortium was set up with participation from 12 differing institutes, each requiring instrument specific filter operating environments and optical metrology. This paper describes the design and fabrication methods used to manufacture these astronomical consortium filters, including the rationale for the selection of multilayer coating designs, temperature-dependant optical properties of the filter materials and FTIR spectral measurements showing the changes in passband and blocking performance on cooling to <50K. We also describe the development of a 7-14µm broadband antireflection coating deposited on Ge lenses and KRS-5 grisms for cryogenic operation at 40K
Resumo:
The health risks associated with the inhalation or ingestion of cadmium are well documented([1,2]). During the past 18 years, EU legislation has steadily been introduced to restrict its use, leaving a requirement for the development of replacement materials. This paper looks at possible alternatives to various cadmium II-VI dielectric compounds used in the deposition of optical thin-films for various opto-electronic devices. Application areas of particular interest are for infrared multilayer interference filter fabrication and solar cell industries, where cadmium-based coatings currently find widespread use. The results of single and multilayer designs comprising CdTe, CdS, CdSe and PbTe deposited onto group IV and II-VI materials as interference filters for the mid-IR region are presented. Thin films of SnN, SnO2, SnS and SnSe are fabricated by plasma assisted CVD, reactive RF sputtering and thermal evaporation. Examination of these films using FTIR spectroscopy, SEM, EDX analysis and optical characterisation methods provide details of material dispersion, absorption, composition, refractive index, energy band gap and layer thicknesses. The optimisation of deposition parameters in order to synthesise coatings with similar optical and semiconductor properties as those containing cadmium has been investigated. Results of environmental, durability and stability trials are also presented.
Resumo:
The cooled infrared filters and dichroic beam splitters manufactured for the Mid-Infrared Instrument are key optical components for the selection and isolation of wavelengths in the study of astrophysical properties of stars, galaxies, and other planetary objects. We describe the spectral design and manufacture of the precision cooled filter coatings for the spectrometer (7 K) and imager (9 K). Details of the design methods used to achieve the spectral requirements, selection of thin film materials, deposition technique, and testing are presented together with the optical layout of the instrument. (C) 2008 Optical Society of America.
Resumo:
This paper describes the design and manufacture of a set of precision cooled (210K) narrow-bandpass filters for the infrared imager and sounder on the Indian Space Research Organisation (ISRO) INSAT-3D meteorological satellite. We discuss the basis for the choice of multilayer coating designs and materials for 21 differing filter channels, together with their temperature-dependence, thin film deposition technologies, substrate metrology, and environmental durability performance. (C) 2008 Optical Society of America.