127 resultados para Employee stock options
Resumo:
It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.
Resumo:
Cities and urban regions are undertaking efforts to quantify greenhouse (GHG) emissions from their jurisdictional boundaries. Although inventorying methodologies are beginning to standardize for GHG sources, carbon sequestration is generally not quantified. This article describes the methodology and quantification of gross urban carbon sinks. Sinks are categorized into direct and embodied sinks. Direct sinks generally incorporate natural process, such as humification in soils and photosynthetic biomass growth (in urban trees, perennial crops, and regional forests). Embodied sinks include activities associated with consumptive behavior that result in the import and/or storage of carbon, such as landfilling of waste, concrete construction, and utilization of durable wood products. Using methodologies based on the Intergovernmental Panel on Climate Change 2006 guidelines (for direct sinks) and peer-reviewed literature (for embodied sinks), carbon sequestration for 2005 is calculated for the Greater Toronto Area. Direct sinks are found to be 317 kilotons of carbon (kt C), and are dominated by regional forest biomass. Embodied sinks are calculated to be 234 kt C based on one year's consumption, though a complete life cycle accounting of emissions would likely transform this sum from a carbon sink to a source. There is considerable uncertainty associated with the methodologies used, which could be addressed with city-specific stock-change measurements. Further options for enhancing carbon sink capacity within urban environments are explored, such as urban biomass growth and carbon capture and storage.
Resumo:
In this paper, we investigate the pricing of crack spread options. Particular emphasis is placed on the question of whether univariate modeling of the crack spread or explicit modeling of the two underlyings is preferable. Therefore, we contrast a bivariate GARCH volatility model for cointegrated underlyings with the alternative of modeling the crack spread directly. Conducting an empirical analysis of crude oil/heating oil and crude oil/gasoline crack spread options traded on the New York Mercantile Exchange, the more simplistic univariate approach is found to be superior with respect to option pricing performance.
Resumo:
The outcome of the UK’s referendum on continued EU membership is at the time of writing uncertain, and the consequences of a vote to remain (‘Bremain’) or leave (‘Brexit’) difficult to predict. Polarised views have been voiced about the impact of Brexit on UK agriculture, and on the nature and level of funding, of future policy. Policymakers would not have the luxury of devising a new policy from scratch. WTO rules and commitments, the nature of any future accord with the EU, budget constraints, the rather different perspectives of the UK’s devolved administrations in Scotland, Wales and Northern Ireland, and the expectations of farmers, landowners and the environmental lobby, will all impact the policymaking process. The WTO dimension, and the UK’s future relationship with the EU, are particularly difficult to predict, and – some commentators believe – may take years to resolve. Brexit’s impact on the future CAP is also unclear. A vote to remain within the EU would not necessarily assuage the Eurosceptics’ criticisms of the EU, or the UK’s perception of the CAP. Whatever the outcome, future agricultural, food and rural land use policies will remain key preoccupations of European governments.