219 resultados para Change-over Designs
Resumo:
Climate change is expected to bring warmer temperatures, changes to rainfall patterns, and increased frequency of extreme weather. Projections of climate impacts on feed crops show that there will likely be opportunities for increased productivity as well as considerable threats to crop productivity in different parts of the world over the next 20 to 50 years. On balance, we anticipate substantial risks to the volume, volatility, and quality of animal feed supply chains from climate change. Adaptation strategies and investment informed by high quality research at the interface of crop and animal science will be needed, both to respond to climate change and to meet the increasing demand for animal products expected over the coming decades.
Resumo:
One of the greatest challenges we face in the twenty-first century is to sustainably feed nine to ten billion people by 2050 while at the same time reducing environmental impact (e.g. greenhouse gas (GHG) emissions, biodiversity loss, land use change and loss of ecosystem services). To this end, food security must be delivered. According to the United Nations definition, ‘food security exists when all people, at all times, have physical and economic access to sufficient,safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life’. At the same time as delivering food security, we must also reduce the environmental impact of food production. Future climate change will make an impact upon food production. On the other hand, agriculture contributes up to about 30% of the anthropogenic GHG emissions that drive climate change. The aim of this review is to outline some of the likely impacts of climate change on agriculture, the mitigation measures available within agriculture to reduce GHG emissions and outlines the very significant challenge of feeding nine to ten billion people sustainably under a future climate, with reduced emissions of GHG. Each challenge is in itself enormous, requiring solutions that co-deliver on all aspects. We conclude that the status quo is not an option, and tinkering with the current production systems is unlikely to deliver the food and ecosystems services we need in the future; radical changes in production and consumption are likely to be required over the coming decades.
Resumo:
A favoured method of assimilating information from state-of-the-art climate models into integrated assessment models of climate impacts is to use the transient climate response (TCR) of the climate models as an input, sometimes accompanied by a pattern matching approach to provide spatial information. More recent approaches to the problem use TCR with another independent piece of climate model output: the land-sea surface warming ratio (φ). In this paper we show why the use of φ in addition to TCR has such utility. Multiple linear regressions of surface temperature change onto TCR and φ in 22 climate models from the CMIP3 multi-model database show that the inclusion of φ explains a much greater fraction of the inter-model variance than using TCR alone. The improvement is particularly pronounced in North America and Eurasia in the boreal summer season, and in the Amazon all year round. The use of φ as the second metric is beneficial for three reasons: firstly it is uncorrelated with TCR in state-of-the-art climate models and can therefore be considered as an independent metric; secondly, because of its projected time-invariance, the magnitude of φ is better constrained than TCR in the immediate future; thirdly, the use of two variables is much simpler than approaches such as pattern scaling from climate models. Finally we show how using the latest estimates of φ from climate models with a mean value of 1.6—as opposed to previously reported values of 1.4—can significantly increase the mean time-integrated discounted damage projections in a state-of-the-art integrated assessment model by about 15 %. When compared to damages calculated without the inclusion of the land-sea warming ratio, this figure rises to 65 %, equivalent to almost 200 trillion dollars over 200 years.
Resumo:
Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.
Resumo:
Results from aircraft and surface observations provided evidence for the existence of mesoscale circulations over the Boreal Ecosystem-Atmosphere Study (BOREAS) domain. Using an integrated approach that included the use of analytical modeling, numerical modeling, and data analysis, we have found that there are substantial contributions to the total budgets of heat over the BOREAS domain generated by mesoscale circulations. This effect is largest when the synoptic flow is relatively weak, yet it is present under less favorable conditions, as shown by the case study presented here. While further analysis is warranted to document this effect, the existence of mesoscale flow is not surprising, since it is related to the presence of landscape patches, including lakes, which are of a size on the order of the local Rossby radius and which have spatial differences in maximum sensible heat flux of about 300 W m−2. We have also analyzed the vertical temperature profile simulated in our case study as well as high-resolution soundings and we have found vertical profiles of temperature change above the boundary layer height, which we attribute in part to mesoscale contributions. Our conclusion is that in regions with organized landscapes, such as BOREAS, even with relatively strong synoptic winds, dynamical scaling criteria should be used to assess whether mesoscale effects should be parameterized or explicitly resolved in numerical models of the atmosphere.
Resumo:
Climate change is expected to increase winter rainfall and flooding in many extratropical regions as evaporation and precipitation rates increase, storms become more intense and storm tracks move polewards. Here, we show how changes in stratospheric circulation could play a significant role in future climate change in the extratropics through an additional shift in the tropospheric circulation. This shift in the circulation alters climate change in regional winter rainfall by an amount large enough to significantly alter regional climate change projections. The changes are consistent with changes in stratospheric winds inducing a change in the baroclinic eddy growth rate across the depth of the troposphere. A change in mean wind structure and an equatorward shift of the tropospheric storm tracks relative to models with poor stratospheric resolution allows coupling with surface climate. Using the Atlantic storm track as an example, we show how this can double the predicted increase in extreme winter rainfall over Western and Central Europe compared to other current climate projections
Resumo:
The use of a high resolution atmospheric model at T106 resolution, for studying the influence of greenhouse warming on tropical storm climatology, is investigated. The same method for identifying the storms has been used as in a previous study by Bengtsson et al. The sea surface temperature anomalies have been taken from a previous transient climate change experiment, obtained with a low resolution ocean-atmosphere coupled model. The global distribution of the storms, at the time when the CO2 concentration in the atmosphere had doubled, agrees in geographical position and seasonal variability with that of the present climate, but the number of storms is significantly reduced, particularly at the Southern Hemisphere. The main reason to this, appear to be connected to changes in the large scale circulation, such as a weaker Hadley circulation and stronger upper air westerlies. The low level vorticity in the hurricane genesis regions is generally reduced compared to the present climate, while the vertical tropospheric wind shear is somewhat increased. Most tropical storm regions indicate reduced surface windspeeds and a slightly weaker hydrological cycle.
Resumo:
A high-resolution GCM is found to simulate precipitation and surface energy balance of high latitudes with high accuracy. This opens new possibilities to investigate the future mass balance of polar glaciers and its effect on sea level. The surface mass balance of the Greenland and the Antarctic ice sheets is simulated using the ECHAM3 GCM with TI06 horizontal resolution. With this model, two 5-year integrations for the present and doubled carbon dioxide conditions based on the boundary conditions provided by the ECHAM1/T21 transient experiment have been conducted. A comparison of the two experiments over Greenland and Antarctica shows to what extent the effect of climate change on the mass balance on the two largest glaciers of the world can differ. On Greenland one sees a slight decrease in accumulation and a substantial increase in melt, while on Antarctica a large increase in accumulation without melt is projected. Translating the mass balances into terms of sea-level equivalent. the Greenland discharge causes a sea level rise of 1.1 mm yr−1, while the accumulation on Antarctica tends to lower it by 0.9 mm yr−1. The change in the combined mass balance of the two continents is almost zero. The sea level change of the next century can be affected more effectively by the thermal expansion of seawater and the mass balance of smaller glaciers outside of Greenland and Antarctica.
Resumo:
Dynamics affects the distribution and abundance of stratospheric ozone directly through transport of ozone itself and indirectly through its effect on ozone chemistry via temperature and transport of other chemical species. Dynamical processes must be considered in order to understand past ozone changes, especially in the northern hemisphere where there appears to be significant low-frequency variability which can look “trend-like” on decadal time scales. A major challenge is to quantify the predictable, or deterministic, component of past ozone changes. Over the coming century, changes in climate will affect the expected recovery of ozone. For policy reasons it is important to be able to distinguish and separately attribute the effects of ozone-depleting substances and greenhouse gases on both ozone and climate. While the radiative-chemical effects can be relatively easily identified, this is not so evident for dynamics — yet dynamical changes (e.g., changes in the Brewer-Dobson circulation) could have a first-order effect on ozone over particular regions. Understanding the predictability and robustness of such dynamical changes represents another major challenge. Chemistry-climate models have recently emerged as useful tools for addressing these questions, as they provide a self-consistent representation of dynamical aspects of climate and their coupling to ozone chemistry. We can expect such models to play an increasingly central role in the study of ozone and climate in the future, analogous to the central role of global climate models in the study of tropospheric climate change.
Resumo:
This paper presents an assessment of the impacts of climate change on a series of indicators of hydrological regimes across the global domain, using a global hydrological model run with climate scenarios constructed using pattern-scaling from 21 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Changes are compared with natural variability, with a significant change being defined as greater than the standard deviation of the hydrological indicator in the absence of climate change. Under an SRES (Special Report on Emissions Scenarios) A1b emissions scenario, substantial proportions of the land surface (excluding Greenland and Antarctica) would experience significant changes in hydrological behaviour by 2050; under one climate model scenario (Hadley Centre HadCM3), average annual runoff increases significantly over 47% of the land surface and decreases over 36%; only 17% therefore sees no significant change. There is considerable variability between regions, depending largely on projected changes in precipitation. Uncertainty in projected river flow regimes is dominated by variation in the spatial patterns of climate change between climate models (hydrological model uncertainty is not included). There is, however, a strong degree of consistency in the overall magnitude and direction of change. More than two-thirds of climate models project a significant increase in average annual runoff across almost a quarter of the land surface, and a significant decrease over 14%, with considerably higher degrees of consistency in some regions. Most climate models project increases in runoff in Canada and high-latitude eastern Europe and Siberia, and decreases in runoff in central Europe, around the Mediterranean, the Mashriq, central America and Brasil. There is some evidence that projecte change in runoff at the regional scale is not linear with change in global average temperature change. The effects of uncertainty in the rate of future emissions is relatively small
Resumo:
A fingerprint method for detecting anthropogenic climate change is applied to new simulations with a coupled ocean-atmosphere general circulation model (CGCM) forced by increasing concentrations of greenhouse gases and aerosols covering the years 1880 to 2050. In addition to the anthropogenic climate change signal, the space-time structure of the natural climate variability for near-surface temperatures is estimated from instrumental data over the last 134 years and two 1000 year simulations with CGCMs. The estimates are compared with paleoclimate data over 570 years. The space-time information on both the signal and the noise is used to maximize the signal-to-noise ratio of a detection variable obtained by applying an optimal filter (fingerprint) to the observed data. The inclusion of aerosols slows the predicted future warming. The probability that the observed increase in near-surface temperatures in recent decades is of natural origin is estimated to be less than 5%. However, this number is dependent on the estimated natural variability level, which is still subject to some uncertainty.
Resumo:
Many reasons are being advanced for the current ‘food crisis’ including financial speculation,increased demand for grains, export bans on selected foodstuffs, inadequate grain stocks, higher oil prices, poor harvests and the use of crop lands for the production of biofuels. This paper reviews the present knowledge of recorded impacts of climate change and variability on crop production, in order to estimate its contribution to the current situation. Many studies demonstrate increased regional temperatures over the last 40 years (often through greater increases in minimum rather than maximum temperatures), but effects on crop yields are mixed. Distinguishing climate effects from changes in yield resulting from improved crop management and genotypes is difficult, but phenological changes affecting sowing, maturity and disease incidence are emerging. Anthropogenic factors appear to be a significant contributory factor to the observed decline in rainfall in southwestern and southeastern Australia, which reduced tradable wheat grain during 2007. Indirect effects of climate change through actions to mitigate or adapt to anticipated changes in climate are also evident. The amount of land diverted from crop production to biofuel production is small but has had a disproportionate effect on tradable grains from the USA. Adaptation of crop production practices and other components of the food system contributing to food security in response to variable and changing climates have occurred, but those households without adequate livelihoods are most in danger of becoming food insecure. Overall, we conclude that changing climate is a small contributor to the current food crisis but cannot be ignored.
Resumo:
Societal concern is growing about the consequences of climate change for food systems and, in a number of regions, for food security. There is also concern that meeting the rising demand for food is leading to environmental degradation thereby exacerbating factors in part responsible for climate change, and further undermining the food systems upon which food security is based. A major emphasis of climate change/food security research over recent years has addressed the agronomic aspects of climate change, and particularly crop yield. This has provided an excellent foundation for assessments of how climate change may affect crop productivity, but the connectivity between these results and the broader issues of food security at large are relatively poorly explored; too often discussions of food security policy appear to be based on a relatively narrow agronomic perspective. To overcome the limitation of current agronomic research outputs there are several scientific challenges where further agronomic effort is necessary, and where agronomic research results can effectively contribute to the broader issues underlying food security. First is the need to better understand how climate change will affect cropping systems including both direct effects on the crops themselves and indirect effects as a result of changed pest and weed dynamics and altered soil and water conditions. Second is the need to assess technical and policy options for either reducing the deleterious impacts or enhancing the benefits of climate change on cropping systems while minimising further environmental degradation. Third is the need to understand how best to address the information needs of policy makers and report and communicate agronomic research results in a manner that will assist the development of food systems adapted to climate change. There are, however, two important considerations regarding these agronomic research contributions to the food security/climate change debate. The first concerns scale. Agronomic research has traditionally been conducted at plot scale over a growing season or perhaps a few years, but many of the issues related to food security operate at larger spatial and temporal scales. Over the last decade, agronomists have begun to establish trials at landscape scale, but there are a number of methodological challenges to be overcome at such scales. The second concerns the position of crop production (which is a primary focus of agronomic research) in the broader context of food security. Production is clearly important, but food distribution and exchange also determine food availability while access to food and food utilisation are other important components of food security. Therefore, while agronomic research alone cannot address all food security/climate change issues (and hence the balance of investment in research and development for crop production vis à vis other aspects of food security needs to be assessed), it will nevertheless continue to have an important role to play: it both improves understanding of the impacts of climate change on crop production and helps to develop adaptation options; and also – and crucially – it improves understanding of the consequences of different adaptation options on further climate forcing. This role can further be strengthened if agronomists work alongside other scientists to develop adaptation options that are not only effective in terms of crop production, but are also environmentally and economically robust, at landscape and regional scales. Furthermore, such integrated approaches to adaptation research are much more likely to address the information need of policy makers. The potential for stronger linkages between the results of agronomic research in the context of climate change and the policy environment will thus be enhanced.
Resumo:
Many institutions across sub-Saharan Africa (SSA) and many funding agencies that support them are currently engaged in initiatives that are targeted towards adapting rainfed agriculture to climate change. This does, however, present some very real and complex research and policy challenges. Given to date the generally low impact of agricultural research across SSA on improving the welfare of rainfed farmers under current climatic conditions, a comprehensive strategy is required if the considerably more complex challenge of adapting agriculture to future climate change is to bear fruit. In articulating such a strategy, it is useful to consider the criteria by which current successful initiatives should be judged.
Resumo:
A climatology of the late summer stratospheric zonal wind turnaround phenomenon is presented, with a particular focus on the behaviour over the Meteorological Service of Canada’s balloon-launching site at Vanscoy, Saskatchewan (52°N, 107°W). Turnaround refers to the change in sign of the zonal wind velocity and occurs twice each year at stratospheric mid-latitudes, in early spring and in late summer. The late summer turnaround is of particular interest to the high-altitude ballooning community because it offers the ideal conditions for launch, but it is also an interesting dynamical phenomenon in its own right. It is studied here using both the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and the United Kingdom Meteorological Office (MetO) analysis products as well as climate simulation data from the Canadian Middle Atmosphere Model (CMAM). The phenomenon and its interannual variability are documented. The predictability of the late summer turnaround over Vanscoy is investigated using both statistical averages and autocorrelation analysis. From the statistical averages, it is found that during every year since 1993, the period from 26 August to 5 September has contained appropriate launch dates. From the autocorrelation analysis, it is found that stratospheric zonal wind anomalies can persist for a month or more during most of the summer, but there is a predictability horizon at the end of the summer — just before turnaround