164 resultados para Casing layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For an increasing number of applications, mesoscale modelling systems now aim to better represent urban areas. The complexity of processes resolved by urban parametrization schemes varies with the application. The concept of fitness-for-purpose is therefore critical for both the choice of parametrizations and the way in which the scheme should be evaluated. A systematic and objective model response analysis procedure (Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm) is used to assess the fitness of the single-layer urban canopy parametrization implemented in the Weather Research and Forecasting (WRF) model. The scheme is evaluated regarding its ability to simulate observed surface energy fluxes and the sensitivity to input parameters. Recent amendments are described, focussing on features which improve its applicability to numerical weather prediction, such as a reduced and physically more meaningful list of input parameters. The study shows a high sensitivity of the scheme to parameters characterizing roof properties in contrast to a low response to road-related ones. Problems in partitioning of energy between turbulent sensible and latent heat fluxes are also emphasized. Some initial guidelines to prioritize efforts to obtain urban land-cover class characteristics in WRF are provided. Copyright © 2010 Royal Meteorological Society and Crown Copyright.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize near-surface ocean diurnal warm-layer events, using satellite observations and fields from numerical weather forecasting. The study covers April to September, 2006, over the area 11°W to 17°E and 35°N to 57°N, with 0.1° cells. We use hourly satellite SSTs from which peak amplitudes of diurnal cycles in SST (dSSTs) can be estimated with error ∼0.3 K. The diurnal excursions of SST observed are spatially and temporally coherent. The largest dSSTs exceed 6 K, affect 0.01% of the surface, and are seen in the Mediterranean, North and Irish Seas. There is an anti-correlation between the magnitude and the horizontal length scale of dSST events. Events wherein dSST exceeds 4 K have length scales of ≤40 km. From the frequency distribution of different measures of wind-speed minima, we infer that extreme dSST maxima arise where conditions of low wind speed are sustained from early morning to mid afternoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optically transparent thin-layer electrochemical (OTTLE) cell with a locally extended optical path has been developed in order to perform vibrational circular dichroism (VCD) spectroscopy on chiral molecules prepared in specific oxidation states by means of electrochemical reduction or oxidation. The new design of the electrochemical cell successfully addresses the technical challenges involved in achieving sufficient infrared absorption. The VCD-OTTLE cell proves to be a valuable tool for the investigation of chiral redox-active molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] Sea ice is a two-phase, two-component, reactive porous medium: an example of what is known in other contexts as a mushy layer. The fundamental conservation laws underlying the mathematical description of mushy layers provide a robust foundation for the prediction of sea-ice evolution. Here we show that the general equations describing mushy layers reduce to the model of Maykut and Untersteiner (1971) under the same approximations employed therein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A morphological instability of a mushy layer due to a forced flow in the melt is analysed. The instability is caused by flow induced in the mushy layer by Bernoulli suction at the crests of a sinusoidally perturbed mush–melt interface. The flow in the mushy layer advects heat away from crests which promotes solidification. Two linear stability analyses are presented: the fundamental mechanism for instability is elucidated by considering the case of uniform flow of an inviscid melt; a more complete analysis is then presented for the case of a parallel shear flow of a viscous melt. The novel instability mechanism we analyse here is contrasted with that investigated by Gilpin et al. (1980) and is found to be more potent for the case of newly forming sea ice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meteosat infra-red imagery for the Great Storm of October 1987 is analysed to show a series of very shallow arc-shaped and smaller chevron-shaped cloud features that were associated with damaging surface winds in the dry-slot region of this extra-tropical cyclone. Hypotheses are presented that attribute these low-level cloud features to boundary-layer convergence lines ahead of wind maxima associated with the downward transport of high momentum from overrunning, so-called sting-jet, flows originating in the storm's main cloud head. Copyright © 2004 Royal Meteorological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of the melting of a mushy region in the absence of fluid flow is presented. Similarity solutions are obtained which are used to describe melting from a hot plate with and without the generation of a completely molten region. These solutions are extended to describe the melting of a mushy region in contact with a hot liquid. A significant feature of melting mushy regions is that the phase change occurs internally by dissolution. Our solutions for melting of a mushy region are used to investigate this internal phase change and are compared with the classical Neumann solutions for melting of a pure substance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modulation of air–sea heat fluxes by geostrophic eddies due to the stirring of temperature at the sea surface is discussed and quantified. It is argued that the damping of eddy temperature variance by such air–sea fluxes enhances the dissipation of surface temperature fields. Depending on the time scale of damping relative to that of the eddying motions, surface eddy diffusivities can be significantly enhanced over interior values. The issues are explored and quantified in a controlled setting by driving a tracer field, a proxy for sea surface temperature, with surface altimetric observations in the Antarctic Circumpolar Current (ACC) of the Southern Ocean. A new, tracer-based diagnostic of eddy diffusivity is introduced, which is related to the Nakamura effective diffusivity. Using this, the mixed layer lateral eddy diffusivities associated with (i) eddy stirring and small-scale mixing and (ii) surface damping by air–sea interaction is quantified. In the ACC, a diffusivity associated with surface damping of a comparable magnitude to that associated with eddy stirring (;500 m2 s21) is found. In frontal regions prevalent in the ACC, an augmentation of surface lateral eddy diffusivities of this magnitude is equivalent to an air–sea flux of 100 W m22 acting over a mixed layer depth of 100 m, a very significant effect. Finally, the implications for other tracer fields such as salinity, dissolved gases, and chlorophyll are discussed. Different tracers are found to have surface eddy diffusivities that differ significantly in magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies evaluating model boundary-layer schemes focus either on near-surface parameters or on short-term observational campaigns. This reflects the observational datasets that are widely available for use in model evaluation. In this paper we show how surface and long-term Doppler lidar observations, combined in a way to match model representation of the boundary layer as closely as possible, can be used to evaluate the skill of boundary-layer forecasts. We use a 2-year observational dataset from a rural site in the UK to evaluate a climatology of boundary layer type forecast by the UK Met Office Unified Model. In addition, we demonstrate the use of a binary skill score (Symmetric Extremal Dependence Index) to investigate the dependence of forecast skill on season, horizontal resolution and forecast leadtime. A clear diurnal and seasonal cycle can be seen in the climatology of both the model and observations, with the main discrepancies being the model overpredicting cumulus capped and decoupled stratocumulus capped boundary-layers and underpredicting well mixed boundary-layers. Using the SEDI skill score the model is most skillful at predicting the surface stability. The skill of the model in predicting cumulus capped and stratocumulus capped stable boundary layer forecasts is low but greater than a 24 hr persistence forecast. In contrast, the prediction of decoupled boundary-layers and boundary-layers with multiple cloud layers is lower than persistence. This process based evaluation approach has the potential to be applied to other boundary-layer parameterisation schemes with similar decision structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport of pollution and heatout of streets into the boundary layer above is not currently understood and so fluxes cannot be quantified. Scalar concentration within the street is determined by the flux out of it and so quantifying fluxes for turbulent flow over a rough urban surface is essential. We have developed a naphthalene sublimation technique to measure transfer from a two-dimensional street canyon in a wind tunnel for the case of flow perpendicular to the street. The street was coated with naphthalene, which sublimes at room temperature, so that the vapour represented the scalar source. The transfer velocity wT relates the flux out of the canyon to the concentration within it and is shown to be linearly related to windspeed above the street. The dimensionless transfer coefficient wT/Uδ represents the ventilation efficiency of the canyon (here, wT is a transfer velocity,Uδ is the wind speed at the boundary-layer top). Observed values are between 1.5 and 2.7 ×10-3 and, for the case where H/W→0 (ratio of buildingheight to street width), values are in the same range as estimates of transfer from a flat plate, giving confidence that the technique yields accurate values for street canyon scalar transfer. wT/Uδ varies with aspect ratio (H/W), reaching a maximum in the wake interference regime (0.3 < H/W < 0.65). However, when upstream roughness is increased, the maximum in wT/Uδ reduces, suggesting that street ventilation is less sensitive to H/W when the flow is in equilibrium with the urban surface. The results suggest that using naphthalene sublimation with wind-tunnel models of urban surfaces can provide a direct measure of area-averaged scalar fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Weather Research and Forecasting model was applied to analyze variations in the planetary boundary layer (PBL) structure over Southeast England including central and suburban London. The parameterizations and predictive skills of two nonlocal mixing PBL schemes, YSU and ACM2, and two local mixing PBL schemes, MYJ and MYNN2, were evaluated over a variety of stability conditions, with model predictions at a 3 km grid spacing. The PBL height predictions, which are critical for scaling turbulence and diffusion in meteorological and air quality models, show significant intra-scheme variance (> 20%), and the reasons are presented. ACM2 diagnoses the PBL height thermodynamically using the bulk Richardson number method, which leads to a good agreement with the lidar data for both unstable and stable conditions. The modeled vertical profiles in the PBL, such as wind speed, turbulent kinetic energy (TKE), and heat flux, exhibit large spreads across the PBL schemes. The TKE predicted by MYJ were found to be too small and show much less diurnal variation as compared with observations over London. MYNN2 produces better TKE predictions at low levels than MYJ, but its turbulent length scale increases with height in the upper part of the strongly convective PBL, where it should decrease. The local PBL schemes considerably underestimate the entrainment heat fluxes for convective cases. The nonlocal PBL schemes exhibit stronger mixing in the mean wind fields under convective conditions than the local PBL schemes and agree better with large-eddy simulation (LES) studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been known that the urban surface energy balance is different to that of a rural surface, and that heating of the urban surface after sunset gives rise to the Urban Heat Island (UHI). Less well known is how flow and turbulence structure above the urban surface are changed during different phases of the urban boundary layer (UBL). This paper presents new observations above both an urban and rural surface and investigates how much UBL structure deviates from classical behaviour. A 5-day, low wind, cloudless, high pressure period over London, UK, was chosen for analysis, during which there was a strong UHI. Boundary layer evolution for both sites was determined by the diurnal cycle in sensible heat flux, with an extended decay period of approximately 4 h for the convective UBL. This is referred to as the “Urban Convective Island” as the surrounding rural area was already stable at this time. Mixing height magnitude depended on the combination of regional temperature profiles and surface temperature. Given the daytime UHI intensity of 1.5∘C, combined with multiple inversions in the temperature profile, urban and rural mixing heights underwent opposite trends over the period, resulting in a factor of three height difference by the fifth day. Nocturnal jets undergoing inertial oscillations were observed aloft in the urban wind profile as soon as the rural boundary layer became stable: clear jet maxima over the urban surface only emerged once the UBL had become stable. This was due to mixing during the Urban Convective Island reducing shear. Analysis of turbulent moments (variance, skewness and kurtosis) showed “upside-down” boundary layer characteristics on some mornings during initial rapid growth of the convective UBL. During the “Urban Convective Island” phase, turbulence structure still resembled a classical convective boundary layer but with some influence from shear aloft, depending on jet strength. These results demonstrate that appropriate choice of Doppler lidar scan patterns can give detailed profiles of UBL flow. Insights drawn from the observations have implications for accuracy of boundary conditions when simulating urban flow and dispersion, as the UBL is clearly the result of processes driven not only by local surface conditions but also regional atmospheric structure.