216 resultados para Caravaggio, Michelangelo Merisi da, 1573-1610.
Resumo:
Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the ClausiusClapeyron equation) and of precipitation at the rate 2-3 %/K (in line with energetic constraints). Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at ~ -0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988-2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at ~15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius-Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the large-scale atmospheric circulation and regional feedbacks.
Resumo:
In a number works Jerry Fodor has defended a reductive, causal and referential theory of cognitive content. I argue against this, defending a quasi-Fregean notion of cognitive content, and arguing also that the cognitive content of non-singular concepts is narrow, rather than wide.
Resumo:
Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.
Resumo:
Interannual anomalies in vertical profiles of stratospheric ozone, in both equatorial and extratropical regions, have been shown to exhibit a strong seasonal persistence, namely, extended temporal autocorrelations during certain times of the calendar year. Here we investigate the relationship between this seasonal persistence of equatorial and extratropical ozone anomalies using the SAGE‐corrected SBUV data set, which provides a long‐term ozone profile time series. For the regions of the stratosphere where ozone is under purely dynamical or purely photochemical control, the seasonal persistence of equatorial and extratropical ozone anomalies arises from distinct mechanisms but preserves an anticorrelation between tropical and extratropical anomalies established during the winter period. In the 16–10 hPa layer, where ozone is controlled by both dynamical and photochemical processes, equatorial ozone anomalies exhibit a completely different behavior compared to ozone anomalies above and below in terms of variability, seasonal persistence, and especially the relationship between equatorial and extratropical ozone. Cross‐latitude‐time correlations show that for the 16–10 hPa layer, Northern Hemisphere (NH) extratropical ozone anomalies show the same variability as equatorial ozone anomalies but lagged by 3–6 months. High correlation coefficients are observed during the time frame of seasonal persistence of ozone anomalies, which is June– December for equatorial ozone and shifts by approximately 3–6 months when going from the equatorial region to NH extratropics. Thus in the transition zone between dynamical and photochemical control, equatorial ozone anomalies established in boreal summer/autumn are mirrored by NH extratropical ozone anomalies with a time lag similar to transport time scales. Equatorial ozone anomalies established in boreal winter/spring are likewise correlated with ozone anomalies in the Southern Hemisphere extratropics with a time lag comparable to transport time scales, similar to what is seen in the NH. However, the correlations between equatorial and SH extratropical ozone in the 10–16 hPa layer are weak.
Resumo:
Analysis of the variability of equatorial ozone profiles in the Satellite Aerosol and Gas Experiment‐corrected Solar Backscatter Ultraviolet data set demonstrates a strong seasonal persistence of interannual ozone anomalies, revealing a seasonal dependence to equatorial ozone variability. In the lower stratosphere (40–25 hPa) and in the upper stratosphere (6–4 hPa), ozone anomalies persist from approximately November until June of the following year, while ozone anomalies in the layer between 16 and 10 hPa persist from June to December. Analysis of zonal wind fields in the lower stratosphere and temperature fields in the upper stratosphere reveals a similar seasonal persistence of the zonal wind and temperature anomalies associated with the quasi‐biennial oscillation (QBO). Thus, the persistence of interannual ozone anomalies in the lower and upper equatorial stratosphere, which are mainly associated with the well‐known QBO ozone signal through the QBO-induced meridional circulation, is related to a newly identified seasonal persistence of the QBO itself. The upper stratospheric QBO ozone signal is argued to arise from a combination of QBO‐induced temperature and NOx perturbations, with the former dominating at 5 hPa and the latter at 10 hPa. Ozone anomalies in the transition zone between dynamical and photochemical control of ozone (16–10 hPa) are less influenced by the QBO signal and show a quite different seasonal persistence compared to the regions above and below.
Resumo:
The Earth’s climate, as well as planetary climates in general, is broadly regulated by three fundamental parameters: the total solar irradiance, the planetary albedo and the planetary emissivity. Observations from series of different satellites during the last three decades indicate that these three quantities are generally very stable. The total solar irradiation of some 1,361 W/m2 at 1 A.U. varies within 1 W/m2 during the 11-year solar cycle (Fröhlich 2012). The albedo is close to 29 % with minute changes from year to year but with marked zonal differences (Stevens and Schwartz 2012). The only exception to the overall stability is a minor decrease in the planetary emissivity (the ratio between the radiation to space and the radiation from the surface of the Earth). This is a consequence of the increase in atmospheric greenhouse gas amounts making the atmosphere gradually more opaque to long-wave terrestrial radiation. As a consequence, radiation processes are slightly out of balance as less heat is leaving the Earth in the form of thermal radiation than the amount of heat from the incoming solar radiation. Present space-based systems cannot yet measure this imbalance, but the effect can be inferred from the increase in heat in the oceans where most of the heat accumulates. Minor amounts of heat are used to melt ice and to warm the atmosphere and the surface of the Earth.
Resumo:
Rising sea level is perhaps the most severe consequence of climate warming, as much of the world’s population and infrastructure is located near current sea level (Lemke et al. 2007). A major rise of a metre or more would cause serious problems. Such possibilities have been suggested by Hansen and Sato (2011) who pointed out that sea level was several metres higher than now during the Holsteinian and Eemian interglacials (about 250,000 and 120,000 years ago, respectively), even though the global temperature was then only slightly higher than it is nowadays. It is consequently of the utmost importance to determine whether such a sea level rise could occur and, if so, how fast it might happen. Sea level undergoes considerable changes due to natural processes such as the wind, ocean currents and tidal motions. On longer time scales, the sea level is influenced by steric effects (sea water expansion caused by temperature and salinity changes of the ocean) and by eustatic effects caused by changes in ocean mass. Changes in the Earth’s cryosphere, such as the retreat or expansion of glaciers and land ice areas, have been the dominant cause of sea level change during the Earth’s recent history. During the glacial cycles of the last million years, the sea level varied by a large amount, of the order of 100 m. If the Earth’s cryosphere were to disappear completely, the sea level would rise by some 65 m. The scientific papers in the present volume address the different aspects of the Earth’s cryosphere and how the different changes in the cryosphere affect sea level change. It represents the outcome of the first workshop held within the new ISSI Earth Science Programme. The workshop took place from 22 to 26 March, 2010, in Bern, Switzerland, with the objective of providing an in-depth insight into the future of mountain glaciers and the large land ice areas of Antarctica and Greenland, which are exposed to natural and anthropogenic climate influences, and their effects on sea level change. The participants of the workshop are experts in different fields including meteorology, climatology, oceanography, glaciology and geodesy; they use advanced space-based observational studies and state-of-the-art numerical modelling.
Resumo:
The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979–2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40 km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60 km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495 km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4 mm/year. For Antarctica there is an increase in the positive surface mass balance of 285 km3/year corresponding to a sea level fall by 0.8 mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7 cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centuries.
Resumo:
A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.
Resumo:
Antiinflammatory compounds in the diet can alleviate excessive inflammation, a factor in the pathogenesis of common diseases such as rheumatoid arthritis, atherosclerosis and diabetes. This study examined three European herbs, chamomile (Matricaria chamomilla), meadowsweet (Filipendula ulmaria L.) and willow bark (Salix alba L.), which have been traditionally used to treat inflammation and their potential for use as antiinflammatory agents. Aqueous herbal extracts and isolated polyphenolic compounds (apigenin, quercetin and salicylic acid, 0–100 μM) were incubated with THP1 macrophages, and interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha (TNF-) were measured. At concentrations of 10 μM, both apigenin and quercetin reduced IL-6 significantly ( p < 0.05). Apigenin at 10 μM and quercetin at 25 μM reduced TNF- significantly ( p < 0.05). Amongst the herbal extracts, willow bark had the greatest antiinflammatory activity at reducing IL-6 and TNF- production. This was followed by meadowsweet and then chamomile. The lowest effective antiinflammatory concentrations were noncytotoxic (MTT mitochondrial activity assay). The Comet assay, which was used to study the protective effect of the isolated phenols against oxidative damage, showed positive results for all three polyphenols. These are the first findings that demonstrate the antiinflammatory capacity of these herbal extracts.
Resumo:
Measurements of the electrical characteristics of the atmosphere above the surface have been made for over 200 years, from a variety of different platforms, including kites, balloons, rockets and aircraft. From these measurements, a great deal of information about the electrical characteristics of the atmosphere has been gained, assisting our understanding of the global atmospheric electric circuit, thunderstorm electrification and lightning generation mechanisms, discovery of transient luminous events above thunderstorms, and many other electrical phenomena. This paper surveys the history of atmospheric electrical measurements aloft, from the earliest manned balloon ascents to current day observations with free balloons and aircraft. Measurements of atmospheric electrical parameters in a range of meteorological conditions are described, including clear air conditions, polluted conditions, non-thunderstorm clouds, and thunderstorm clouds, spanning a range of atmospheric conditions, from fair weather, to the most electrically active.
Resumo:
The planning of semi-autonomous vehicles in traffic scenarios is a relatively new problem that contributes towards the goal of making road travel by vehicles free of human drivers. An algorithm needs to ensure optimal real time planning of multiple vehicles (moving in either direction along a road), in the presence of a complex obstacle network. Unlike other approaches, here we assume that speed lanes are not present and that different lanes do not need to be maintained for inbound and outbound traffic. Our basic hypothesis is to carry forward the planning task to ensure that a sufficient distance is maintained by each vehicle from all other vehicles, obstacles and road boundaries. We present here a 4-layer planning algorithm that consists of road selection (for selecting the individual roads of traversal to reach the goal), pathway selection (a strategy to avoid and/or overtake obstacles, road diversions and other blockages), pathway distribution (to select the position of a vehicle at every instance of time in a pathway), and trajectory generation (for generating a curve, smooth enough, to allow for the maximum possible speed). Cooperation between vehicles is handled separately at the different levels, the aim being to maximize the separation between vehicles. Simulated results exhibit behaviours of smooth, efficient and safe driving of vehicles in multiple scenarios; along with typical vehicle behaviours including following and overtaking.
Resumo:
Theory and treatment for childhood anxiety disorders typically implicates children’s negative cognitions, yet little is known about the characteristics of thinking styles of clinically anxious children. In particular, it is unclear whether differences in thinking styles between children with anxiety disorders and non-anxious children vary as a function of child age, whether particular cognitive distortions are associated with childhood anxiety disorders at different child ages, and whether cognitive content is disorder-specific. The current study addressed these questions among 120 7 - 12 year old children (53% female) who met diagnostic criteria for social anxiety disorder, other anxiety disorder, or who were not currently anxious. Contrary to expectations, threat interpretation was not inflated amongst anxious compared to non-anxious children at any age, although older (10 - 12 year old) anxious children did differ from non-anxious children on measures of perceived coping. The notion of cognitive-content specificity was not supported across the age-range. The findings challenge current treatment models of childhood anxiety, and suggest that a focus on changing anxious children’s cognitions is not warranted in mid-childhood, and in late childhood cognitive approaches may be better focussed on promoting children’s perceptions of control rather than challenging threat interpretations.
Resumo:
What are the precise brain regions supporting the short-term retention of verbal information? A previous functional magnetic resonance imaging (fMRI) study suggested that they may be topographically variable across individuals, occurring, in most, in regions posterior to prefrontal cortex (PFC), and that detection of these regions may be best suited to a single-subject (SS) approach to fMRI analysis (Feredoes and Postle, 2007). In contrast, other studies using spatially normalized group-averaged (SNGA) analyses have localized storage-related activity to PFC. To evaluate the necessity of the regions identified by these two methods, we applied repetitive transcranial magnetic stimulation (rTMS) to SS- and SNGA-identified regions throughout the retention period of a delayed letter-recognition task. Results indicated that rTMS targeting SS analysis-identified regions of left perisylvian and sensorimotor cortex impaired performance, whereas rTMS targeting the SNGA-identified region of left caudal PFC had no effect on performance. Our results support the view that the short-term retention of verbal information can be supported by regions associated with acoustic, lexical, phonological, and speech-based representation of information. They also suggest that the brain bases of some cognitive functions may be better detected by SS than by SNGA approaches to fMRI data analysis.