211 resultados para CLOUD MICROPHYSICS PARAMETERIZATION
Resumo:
Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) which exhibit signatures consistent with a magnetic flux rope structure. Techniques for reconstructing flux rope orientation from single-point in situ observations typically assume the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force-free flux rope (FFFR) fitting. In this study, we outline a non-cylindrical magnetic flux rope model, in which the flux rope radius and axial curvature can both vary along the length of the axis. This model is not necessarily intended to represent the global structure of MCs, but it can be used to quantify the error in MC reconstruction resulting from the cylindrical approximation. When the local flux rope axis is approximately perpendicular to the heliocentric radial direction, which is also the effective spacecraft trajectory through a magnetic cloud, the error in using cylindrical reconstruction methods is relatively small (≈ 10∘). However, as the local axis orientation becomes increasingly aligned with the radial direction, the spacecraft trajectory may pass close to the axis at two separate locations. This results in a magnetic field time series which deviates significantly from encounters with a force-free flux rope, and consequently the error in the axis orientation derived from cylindrical reconstructions can be as much as 90∘. Such two-axis encounters can result in an apparent ‘double flux rope’ signature in the magnetic field time series, sometimes observed in spacecraft data. Analysing each axis encounter independently produces reasonably accurate axis orientations with MVA, but larger errors with FFFR fitting.
Resumo:
In numerical weather prediction (NWP) data assimilation (DA) methods are used to combine available observations with numerical model estimates. This is done by minimising measures of error on both observations and model estimates with more weight given to data that can be more trusted. For any DA method an estimate of the initial forecast error covariance matrix is required. For convective scale data assimilation, however, the properties of the error covariances are not well understood. An effective way to investigate covariance properties in the presence of convection is to use an ensemble-based method for which an estimate of the error covariance is readily available at each time step. In this work, we investigate the performance of the ensemble square root filter (EnSRF) in the presence of cloud growth applied to an idealised 1D convective column model of the atmosphere. We show that the EnSRF performs well in capturing cloud growth, but the ensemble does not cope well with discontinuities introduced into the system by parameterised rain. The state estimates lose accuracy, and more importantly the ensemble is unable to capture the spread (variance) of the estimates correctly. We also find, counter-intuitively, that by reducing the spatial frequency of observations and/or the accuracy of the observations, the ensemble is able to capture the states and their variability successfully across all regimes.
Resumo:
A low cost, disposable instrument for measuring solar radiation during meteorological balloon flights through cloud layers is described. Using a photodiode detector and low thermal drift signal conditioning circuitry, the device showed less than 1% drift for temperatures varied from +20 °C to −35 °C. The angular response to radiation, which declined less rapidly than the cosine of the angle between the incident radiation and normal incidence, is used for cloud detection exploiting the motion of the platform. Oriented upwards, the natural motion imposed by the balloon allows cloud and clear air to be distinguished by the absence of radiation variability within cloud, where the diffuse radiation present is isotropic. The optical method employed by the solar radiation instrument has also been demonstrated to provide higher resolution measurements of cloud boundaries than relative humidity measurements alone.
Resumo:
We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010.
Resumo:
A new parameterisation is described that predicts the temperature perturbations due to sub-grid scale orographic gravity waves in the atmosphere of the 19 level HadAM3 version of the United Kingdom Met Office Unified Model. The explicit calculation of the wave phase allows the sign of the temperature perturbation to be predicted. The scheme is used to create orographic clouds, including cirrus, that were previously absent in model simulations. A novel approach to the validation of this parameterisation makes use of both satellite observations of a case study, and a simulation in which the Unified Model is nudged towards ERA-40 assimilated winds, temperatures and humidities. It is demonstrated that this approach offers a feasible way of introducing large scale orographic cirrus clouds into GCMs.
Resumo:
One-second-resolution zenith radiance measure- ments from the Atmospheric Radiation Measurement pro- gram’s new shortwave spectrometer (SWS) provide a unique opportunity to analyze the transition zone between cloudy and cloud-free air, which has considerable bearing on the aerosol indirect effect. In the transition zone, we find a re- markable linear relationship between the sum and difference of radiances at 870 and 1640 nm wavelengths. The intercept of the relationship is determined primarily by aerosol prop- erties, and the slope by cloud properties. We then show that this linearity can be predicted from simple theoretical con- siderations and furthermore that it supports the hypothesis of inhomogeneous mixing, whereby optical depth increases as a cloud is approached but the effective drop size remains un- changed.
Resumo:
Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models and better estimate of the Earth radiative budget. However, large differences are found in current cloud products retrieved from ground-based remote sensing measurements using various retrieval algorithms. Understanding the differences is an important step to address uncertainties in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based cloud retrievals using ARM remote sensing measurements is carried out. We place emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus of many current retrieval development efforts due to their radiative importance and relatively simple structure. Large systematic discrepancies in cloud microphysical properties are found in these two types of clouds among the nine cloud retrieval products, particularly for the cloud liquid and ice particle effective radius. Note that the differences among some retrieval products are even larger than the prescribed uncertainties reported by the retrieval algorithm developers. It is shown that most of these large differences have their roots in the retrieval theoretical bases, assumptions, as well as input and constraint parameters. This study suggests the need to further validate current retrieval theories and assumptions and even the development of new retrieval algorithms with more observations under different cloud regimes.
Resumo:
The present workshop constitutes the 5th in the annual series on “Concepts for Convective Parameterizations in Large-Scale Models”. The purpose of the workshop series has been to discuss the fundamental theoretical issues of convection parameterization with a small number of European scientists. The workshop series has been funded by European Cooperation in the Field of Scientific and Technical Research (COST) Action ES0905. The theme of the workshop for the year 2012 was decided from a main conclusion of the previous workshop, which focused on the convective organization problem, seeking a means for implementing such effects into convection parameterizations (Yano et al. 2012). As it turned out, in order to discuss this implementation issue in any concrete manner, we have first to know very well the bells and whistles of convection parameterizations. This was the purpose of the 5th workshop. The title of the workshop is rather metaphorically tagged as “Bulk or Spectrum?”, because this is a typical decision we have to face at the outset of any parameterization development. The following report discusses selected issues of bells and whistles addressed during the meeting.
Resumo:
A cloud-resolving model is modified to implement the weak temperature gradient approximation in order to simulate the interactions between tropical convection and the large-scale tropical circulation. The instantaneous domain-mean potential temperature is relaxed toward a reference profile obtained from a radiative–convective equilibrium simulation of the cloud-resolving model. For homogeneous surface conditions, the model state at equilibrium is a large-scale circulation with its descending branch in the simulated column. This is similar to the equilibrium state found in some other studies, but not all. For this model, the development of such a circulation is insensitive to the relaxation profile and the initial conditions. Two columns of the cloud-resolving model are fully coupled by relaxing the instantaneous domain-mean potential temperature in both columns toward each other. This configuration is energetically closed in contrast to the reference-column configuration. No mean large-scale circulation develops over homogeneous surface conditions, regardless of the relative area of the two columns. The sensitivity to nonuniform surface conditions is similar to that obtained in the reference-column configuration if the two simulated columns have very different areas, but it is markedly weaker for columns of comparable area. The weaker sensitivity can be understood as being a consequence of a formulation for which the energy budget is closed. The reference-column configuration has been used to study the convection in a local region under the influence of a large-scale circulation. The extension to a two-column configuration is proposed as a methodology for studying the influence on local convection of changes in remote convection.
Resumo:
A theoretical framework for the joint conservation of energy and momentum in the parameterization of subgrid-scale processes in climate models is presented. The framework couples a hydrostatic resolved (planetary scale) flow to a nonhydrostatic subgrid-scale (mesoscale) flow. The temporal and horizontal spatial scale separation between the planetary scale and mesoscale is imposed using multiple-scale asymptotics. Energy and momentum are exchanged through subgrid-scale flux convergences of heat, pressure, and momentum. The generation and dissipation of subgrid-scale energy and momentum is understood using wave-activity conservation laws that are derived by exploiting the (mesoscale) temporal and horizontal spatial homogeneities in the planetary-scale flow. The relations between these conservation laws and the planetary-scale dynamics represent generalized nonacceleration theorems. A derived relationship between the wave-activity fluxes-which represents a generalization of the second Eliassen-Palm theorem-is key to ensuring consistency between energy and momentum conservation. The framework includes a consistent formulation of heating and entropy production due to kinetic energy dissipation.
Resumo:
Observational evidence indicates significant regional trends in solar radiation at the surface in both all-sky and cloud-free conditions. Negative trends in the downwelling solar surface irradiance (SSI) have become known as ‘dimming’ while positive trends have become known as ‘brightening’. We use the Met Office Hadley Centre HadGEM2 climate model to model trends in cloud-free and total SSI from the pre-industrial to the present-day and compare these against observations. Simulations driven by CMIP5 emissions are used to model the future trends in dimming/brightening up to the year 2100. The modeled trends are reasonably consistent with observed regional trends in dimming and brightening which are due to changes in concentrations in anthropogenic aerosols and, potentially, changes in cloud cover owing to the aerosol indirect effects and/or cloud feedback mechanisms. The future dimming/brightening in cloud-free SSI is not only caused by changes in anthropogenic aerosols: aerosol impacts are overwhelmed by a large dimming caused by increases in water vapor. There is little trend in the total SSI as cloud cover decreases in the climate model used here, and compensates the effect of the change in water vapor. In terms of the surface energy balance, these trends in SSI are obviously more than compensated by the increase in the downwelling terrestrial irradiance from increased water vapor concentrations. However, the study shows that while water vapor is widely appreciated as a greenhouse gas, water vapor impacts on the atmospheric transmission of solar radiation and the future of global dimming/brightening should not be overlooked.
Resumo:
Activation induced deaminase (AID) deaminates cytosine to uracil, which is required for a functional humoral immune system. Previous work demonstrated, that AID also deaminates 5-methylcytosine (5 mC). Recently, a novel vertebrate modification (5-hydroxymethylcytosine - 5 hmC) has been implicated in functioning in epigenetic reprogramming, yet no molecular pathway explaining the removal of 5 hmC has been identified. AID has been suggested to deaminate 5 hmC, with the 5 hmU product being repaired by base excision repair pathways back to cytosine. Here we demonstrate that AID’s enzymatic activity is inversely proportional to the electron cloud size of C5-cytosine - H . F . methyl .. hydroxymethyl. This makes AID an unlikely candidate to be part of 5 hmC removal.
Resumo:
During propagation, Magnetic Clouds (MC) interact with their environment and, in particular, may reconnect with the solar wind around it, eroding away part of its initial magnetic flux. Here we quantitatively analyze such an interaction using combined, multipoint observations of the same MC flux rope by STEREO A, B, ACE, WIND and THEMIS on November 19–20, 2007. Observation of azimuthal magnetic flux imbalance inside a MC flux rope has been argued to stem from erosion due to magnetic reconnection at its front boundary. The present study adds to such analysis a large set of signatures expected from this erosion process. (1) Comparison of azimuthal flux imbalance for the same MC at widely separated points precludes the crossing of the MC leg as a source of bias in flux imbalance estimates. (2) The use of different methods, associated errors and parametric analyses show that only an unexpectedly large error in MC axis orientation could explain the azimuthal flux imbalance. (3) Reconnection signatures are observed at the MC front at all spacecraft, consistent with an ongoing erosion process. (4) Signatures in suprathermal electrons suggest that the trailing part of the MC has a different large-scale magnetic topology, as expected. The azimuthal magnetic flux erosion estimated at ACE and STEREO A corresponds respectively to 44% and 49% of the inferred initial azimuthal magnetic flux before MC erosion upon propagation. The corresponding average reconnection rate during transit is estimated to be in the range 0.12–0.22 mV/m, suggesting most of the erosion occurs in the inner parts of the heliosphere. Future studies ought to quantify the influence of such an erosion process on geo-effectiveness.
Resumo:
An automated cloud band identification procedure is developed that captures the meteorology of such events over southern Africa. This “metbot” is built upon a connected component labelling method that enables blob detection in various atmospheric fields. Outgoing longwave radiation is used to flag candidate cloud band days by thresholding the data and requiring detected blobs to have sufficient latitudinal extent and exhibit positive tilt. The Laplacian operator is used on gridded reanalysis variables to highlight other features of meteorological interest. The ability of this methodology to capture the significant meteorology and rainfall of these synoptic systems is tested in a case study. Usefulness of the metbot in understanding event to event similarities of meteorological features is demonstrated, highlighting features previous studies have noted as key ingredients to cloud band development in the region. Moreover, this allows the presentation of a composite cloud band life cycle for southern Africa events. The potential of metbot to study multiscale interactions is discussed, emphasising its key strength: the ability to retain details of extreme and infrequent events. It automatically builds a database that is ideal for research questions focused on the influence of intraseasonal to interannual variability processes on synoptic events. Application of the method to convergence zone studies and atmospheric river descriptions is suggested. In conclusion, a relation-building metbot can retain details that are often lost with object-based methods but are crucial in case studies. Capturing and summarising these details may be necessary to develop deeper process-level understanding of multiscale interactions.