138 resultados para Bacteria, Anaerobic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imbalances in gut microbiota composition during ulcerative colitis (UC) indicate a role for the microbiota in propagating the disorder. Such effects were investigated using in vitro batch cultures (with/without mucin, peptone or starch) inoculated with faecal slurries from healthy or UC patients; the growth of five bacterial groups was monitored along with short-chain fatty acid (SCFA) production. Healthy cultures gave two-fold higher growth and SCFA levels with up to ten-fold higher butyrate production. Starch gave the highest growth and SCFA production (particularly butyrate), indicating starch-enhanced saccharolytic activity. Sulphate-reducing bacteria (SRB) were the predominant bacterial group (of five examined) for UC inocula whereas they were the minority group for the healthy inocula. Furthermore, SRB growth was stimulated by peptone presumably due to the presence of sulphur-rich amino acids. The results suggest raised SRB levels in UC, which could contribute to the condition through release of toxic sulphide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enteric coated oral tablets or capsules can deliver dried live cells directly into the intestine. Previously, we found that a live attenuated bacterial vaccine acquired sensitivity to intestinal bile when dried, raising the possibility that although gastric acid can be bypassed, significant loss of viability might occur on release from an enteric coated oral formulations. Here we demonstrate that some food-grade lyophilised preparations of Lactobacillus casei and Lactobacillus salivarius also show temporary bile sensitivity that can be rapidly reversed by rehydration. To protect dried bacterial cells from temporary bile sensitivity, we propose using bile acid adsorbing resins, such as cholestyramine, which are bile acid binding agents, historically used to lower cholesterol levels. Vcaps™ HPMC capsules alone provided up to 830-fold protection from bile. The inclusion of 50% w/w cholestyramine in Vcaps™ HPMC capsules resulted in release of up to 1700-fold more live Lactobacillus casei into simulated intestinal fluid containing 1% bile, when compared to dried cells added directly to bile. We conclude that delivery of dried live probiotic organisms to the intestine may be improved by providing protection from bile by addition of bile adsorbing resins and the use of HPMC capsules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aims to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from naturally fermented olives and select candidates to be used as probiotic starters for the improvement of the traditional fermentation process and the production of newly added value functional foods. Seventy one (71) lactic acid bacterial strains (17 Leuconostoc mesenteroides, 1 Ln. pseudomesenteroides, 13 Lactobacillus plantarum, 37 Lb. pentosus, 1 Lb. paraplantarum, and 2 Lb. paracasei subsp. paracasei) isolated from table olives were screened for their probiotic potential. Lb. rhamnosus GG and Lb. casei Shirota were used as reference strains. The in vitro tests included survival in simulated gastrointestinal tract conditions, antimicrobial activity (against Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7), Caco-2 surface adhesion, resistance to 9 antibiotics and haemolytic activity. Three (3) Lb. pentosus, 4 Lb. plantarum and 2 Lb. paracasei subsp. paracasei strains demonstrated the highest final population (>8 log cfu/ml) after 3 h of exposure at low pH. The majority of the tested strains were resistant to bile salts even after 4 h of exposure, while 5 Lb. plantarum and 7 Lb. pentosus strains exhibited partial bile salt hydrolase activity. None of the strains inhibited the growth of the pathogens tested. Variable efficiency to adhere to Caco-2 cells was observed. This was the same regarding strains' susceptibility towards different antibiotics. None of the strains exhibited β-haemolytic activity. As a whole, 4 strains of Lb. pentosus, 3 strains of Lb. plantarum and 2 strains of Lb. paracasei subsp. paracasei were found to possess desirable in vitro probiotic properties similar to or even better than the reference probiotic strains Lb. casei Shirota and Lb. rhamnosus GG. These strains are good candidates for further investigation both with in vivo studies to elucidate their potential health benefits and in olive fermentation processes to assess their technological performance as novel probiotic starters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rulAB operon of Pseudomonas spp. confers fitness traits on the host and has been suggested to be a hotspot for insertion of mobile elements that carry avirulence genes. Here, for the first time, we show that rulB on plasmid pWW0 is a hotspot for the active site-specific integration of related integron-like elements (ILEs) found in six environmental pseudomonads (strains FH1–FH6). Integration into rulB on pWW0 occurred at position 6488 generating a 3 bp direct repeat. ILEs from FH1 and FH5 were 9403 bp in length and contained eight open reading frames (ORFs), while the ILE from FH4 was 16 233 bp in length and contained 16 ORFs. In all three ILEs, the first 5.1 kb (containing ORFs 1–4) were structurally conserved and contained three predicted site-specific recombinases/integrases and a tetR homologue. Downstream of these resided ORFs of the ‘variable side’ with structural and sequence similarity to those encoding survival traits on the fitness enhancing plasmid pGRT1 (ILEFH1 and ILEFH5) and the NR-II virulence region of genomic island PAGI-5 (ILEFH4). Collectively, these ILEs share features with the previously described type III protein secretion system effector ILEs and are considered important to host survival and transfer of fitness enhancing and (a)virulence genes between bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of antibiotics in birds and animals intended for human consumption within the European Union (EU) and elsewhere has been subject to regulation prohibiting the use of antimicrobials as growth promoters and the use of last resort antibiotics in an attempt to reduce the spread of multi-resistant Gram negative bacteria. Given the inexorable spread of antibiotic resistance there is an increasing need for improved monitoring of our food. Using selective media, Gram negative bacteria were isolated from retail chicken of UK-Intensively reared (n = 27), Irish-Intensively reared (n = 19) and UK-Free range (n = 30) origin and subjected to an oligonucleotide based array system for the detection of 47 clinically relevant antibiotic resistance genes (ARGs) and two integrase genes. High incidences of β-lactamase genes were noted in all sample types, acc (67%), cmy (80%), fox (55%) and tem (40%) while chloramphenicol resistant determinants were detected in bacteria from the UK poultry portions and were absent in bacteria from the Irish samples. Denaturing Gradient Gel Electrophoresis (DGGE) was used to qualitatively analyse the Gram negative population in the samples and showed the expected diversity based on band stabbing and DNA sequencing. The array system proved to be a quick method for the detection of antibiotic resistance gene (ARG) burden within a mixed Gram negative bacterial population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Live bacterial cells (LBC) are administered orally as attenuated vaccines, to deliver biopharmaceutical agents, and as probiotics to improve gastrointestinal health. However, LBC present unique formulation challenges and must survive gastrointestinal antimicrobial defenses including gastric acid after administration. We present a simple new formulation concept, termed Polymer Film Laminate (PFL). LBC are ambient dried onto cast acid-resistant enteric polymer films that are then laminated together to produce a solid oral dosage form. LBC of a model live bacterial vaccine and a probiotic were dried directly onto a cast film of enteric polymer. The effectiveness at protecting dried cells in a simulated gastric fluid (pH 2.0) depended on the composition of enteric polymer film used, with a blend of ethylcellulose plus Eudragit L100 55 providing greater protection from acid than Eudragit alone. However, although PFL made from blended polymers films completely released low molecular weight dye into intestinal conditions (pH 7.0), they failed to release LBC. In contrast, PFL made from Eudragit alone successfully protected dried probiotic or vaccine LBC from simulated gastric fluid for 2h, and subsequently released all viable cells within 60min of transfer into simulated intestinal fluid. Release kinetics could be controlled by modifying the lamination method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although premature infants are increasingly surviving the neonatal period, up to one-third develop bronchopulmonary dysplasia (BPD). Despite evidence that bacterial colonization of the neonatal respiratory tract by certain bacteria may be a risk factor in BPD development, little is known about the role these bacteria play. The aim of this study was to investigate the use of culture-independent molecular profiling methodologies to identify potential etiological agents in neonatal airway secretions. This study used terminal restriction fragment length polymorphism (T-RFLP) and clone sequence analyses to characterize bacterial species in endo-tracheal (ET) aspirates from eight intubated pre-term infants. A wide range of different bacteria was identified in the samples. Forty-seven T-RF band lengths were resolved in the sample set, with a range of 0-15 separate species in each patient. Clone sequence analyses confirmed the identity of individual species detected by T-RFLP. We speculate that the identification of known opportunistic pathogens including S. aureus, Enterobacter sp., Moraxella catarrhalis, Pseudomonas aeruginosa and Streptococcus sp., within the airways of pre-term infants, might be causally related to the subsequent development of BPD. Further, we suggest that culture-independent techniques, such as T-RFLP, hold important potential for the characterization of neonatal conditions, such as BPD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactobacillus plantarum C4 has been tested in in vitro pH-controlled anaerobic faecal batch cultures as compared to Lactobacillus rhamnosus GG to determine changes caused to the composition of faecal bacteria. Effects upon major groups of the microbiota and levels of short-chain fatty acids (SCFA) were assessed over 24 h. Concomitantly, hydrophobic character and ability of both bacterial cells to adhere in vitro to Caco-2 cells were investigated. Quantitative analysis of bacterial populations revealed that there was a significant increase in Lactobacillus/Enterococcus numbers in vessels with probiotic supplemented with fructooligosaccharides (FOS), compared to the negative control. L. plantarum C4 showed to have more hydrophilic behaviour and fulfilled better adhesive properties, compared to L. rhamnosus GG. Thus, L. plantarum C4 can modulate the intestinal microbiota in vitro, promoting changes in some numerically and metabolically relevant microbial populations and shifts in the production of SCFA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major hurdle in producing a useful probiotic food product is bacterial survival during storage and ingestion. The aim of this study was to test the effect of γ-PGA immobilisation on the survival of probiotic bacteria when stored in acidic fruit juice. Fruit juices provide an alternative means of probiotic delivery, especially to lactose intolerant individuals. In addition, the survival of γ-PGA-immobilised cells in simulated gastric juice was also assessed. Bifidobacteria strains (B. longum, B. breve), immobilised on 2.5 % γ-PGA, survived significantly better (P < 0.05) in orange and pomegranate juice for 39 and 11 days respectively, compared to free cells. However, cells survived significantly better (P < 0.05) when stored in orange juice compared to pomegranate juice. Moreover, both strains, when protected with 2.5 % γ-PGA, survived in simulated gastric juice (pH 2.0) with a marginal reduction (<0.47 log CFU/ml) or no significant reduction in viable cells after four hours, whereas free cells died within two hours. In conclusion, this research indicates that γ-PGA can be used to protect Bifidobacteria cells in fruit juice, and could also help improve the survival of cells as they pass through the harsh conditions of the gastrointestinal tract (GIT). Following our previous report on the use of γ-PGA as a cryoprotectant for probiotic bacteria, this research further suggests that γ-PGA could be used to improve probiotic survival during the various stages of preparation, storage and ingestion of probiotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intestinal bacteria carry out many fundamental roles, such as the fermentation of non-digestible dietary carbohydrates to produce short chain fatty acids (SCFAs), which can affect host energy levels and gut hormone regulation. Understanding how to manage this ecosystem to improve human health is an important but challenging goal. Antibiotics are the front line of defence against pathogens, but in turn they have adverse effects on indigenous microbial diversity and function. Here, we have investigated whether dietary supplementation—another method used to modulate gut composition and function—could be used to ameliorate the side effects of antibiotics. We perturbed gut bacterial communities with gentamicin and ampicillin in anaerobic batch cultures in vitro. Cultures were supplemented with either pectin (a non-fermentable fibre), inulin (a commonly used prebiotic that promotes the growth of beneficial bacteria) or neither. Although antibiotics often negated the beneficial effects of dietary supplementation, in some treatment combinations, notably ampicillin and inulin, dietary supplementation ameliorated the effects of antibiotics. There is therefore potential for using supplements to lessen the adverse effects of antibiotics. Further knowledge of such mechanisms could lead to better therapeutic manipulation of the human gut microbiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In advancing age, gut populations of beneficial microbes, notably Bifidobacterium spp., show a marked decline. This contributes to an environment less capable of maintaining homoeostasis. This in vitro investigation studied the possible synergistic effects of probiotic supplementation in modulating the gut microbiota enabling prebiotic therapy to in elderly persons. Single stage batch culture anaerobic fermenters were used and inoculated with fecal microbiota obtained from volunteers after taking a 28 day treatment of Bacillus coagulans GBI-30, 6086 (GanedenBC30 (BC30)) or a placebo. The response to prebiotic supplements fructooligosaccharides (FOS) and galactooligosaccharides (GOS) in the fermenters was assessed. Bacterial enumeration was carried out using fluorescent in situ hybridisation and organic acids measured by gas chromatography. Baseline populations of Faecalibacterium prausnitzii, Clostridium lituseburense and Bacillus spp. were significantly higher in those having consumed BC30 compared to the placebo. Both prebiotics increased populations of several purportedly beneficial bacterial groups in both sets of volunteers. Samples from volunteers having ingested the BC30 also increased populations of C. lituseburense, Eubacterium rectale and F. prausnitzii more so than in persons who had consumed the placebo, this also resulted in significantly higher concentrations of butyrate, acetate and propionate. This shows that consumption of BC30 and subsequent use of prebiotics resulted in elevated populations of beneficial genres of bacteria as well as organic acid production

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2 h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid.