139 resultados para Axe HPA
Resumo:
The XWS (eXtreme WindStorms) catalogue consists of storm tracks and model-generated maximum 3 s wind-gust footprints for 50 of the most extreme winter windstorms to hit Europe in the period 1979–2012. The catalogue is intended to be a valuable resource for both academia and industries such as (re)insurance, for example allowing users to characterise extreme European storms, and validate climate and catastrophe models. Several storm severity indices were investigated to find which could best represent a list of known high-loss (severe) storms. The best-performing index was Sft, which is a combination of storm area calculated from the storm footprint and maximum 925 hPa wind speed from the storm track. All the listed severe storms are included in the catalogue, and the remaining ones were selected using Sft. A comparison of the model footprint to station observations revealed that storms were generally well represented, although for some storms the highest gusts were underestimated. Possible reasons for this underestimation include the model failing to simulate strong enough pressure gradients and not representing convective gusts. A new recalibration method was developed to estimate the true distribution of gusts at each grid point and correct for this underestimation. The recalibration model allows for storm-to-storm variation which is essential given that different storms have different degrees of model bias. The catalogue is available at www.europeanwindstorms.org.
Resumo:
In this essay Alison Donnell returns to the material object of Edward Baugh's essay, published in the pages of the Trinidadian little magazine Tapia in 1977, in order to re-read the force of its arguments in the context of its own politicocultural history and to assess the significance of its publication venue. Donnell attends to Baugh's own standing in the highly charged field of Caribbean literary criticism as a critic of both Walcott and Naipaul, and acknowledges his creative contribution to this field as a poet. She also considers how, in the years between the original publication of Baugh's article and its republication, the questions of historical invisibility have entered newly disputed territories that demand attention to how gender, indigeneity, spirituality, and sexuality shape ideas of historical and literary legitimacy, in addition to those foundational questions around a politics of race and class.
Resumo:
Windstorm Kyrill affected large parts of Europe in January 2007 and caused widespread havoc and loss of life. In this study the formation of a secondary cyclone, Kyill II, along the occluded front of the mature cyclone Kyrill and the occurrence of severe wind gusts as Kyrill II passed over Germany are investigated with the help of high-resolution regional climate model simulations. Kyrill underwent an explosive cyclogenesis south of Greenland as the storm crossed polewards of an intense upper-level jet stream. Later in its life cycle secondary cyclogenesis occurred just west of the British Isles. The formation of Kyrill II along the occluded front was associated (a) with frontolytic strain and (b) with strong diabatic heating in combination with a developing upper-level shortwave trough. Sensitivity studies with reduced latent heat release feature a similar development but a weaker secondary cyclone, revealing the importance of diabatic processes during the formation of Kyrill II. Kyrill II moved further towards Europe and its development was favored by a split jet structure aloft, which maintained the cyclone’s exceptionally deep core pressure (below 965 hPa) for at least 36 hours. The occurrence of hurricane force winds related to the strong cold front over North and Central Germany is analyzed using convection-permitting simulations. The lower troposphere exhibits conditional instability, a turbulent flow and evaporative cooling. Simulation at high spatio-temporal resolution suggests that the downward mixing of high momentum (the wind speed at 875 hPa widely exceeded 45 m s-1) accounts for widespread severe surface wind gusts, which is in agreement with observed widespread losses.
Resumo:
A practical orthogonal frequency-division multiplexing (OFDM) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. In this contribution, we advocate a novel nonlinear equalization scheme for OFDM Hammerstein systems. We model the nonlinear HPA, which represents the static nonlinearity of the OFDM Hammerstein channel, by a B-spline neural network, and we develop a highly effective alternating least squares algorithm for estimating the parameters of the OFDM Hammerstein channel, including channel impulse response coefficients and the parameters of the B-spline model. Moreover, we also use another B-spline neural network to model the inversion of the HPA’s nonlinearity, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalization of the OFDM Hammerstein channel can then be accomplished by the usual one-tap linear equalization as well as the inverse B-spline neural network model obtained. The effectiveness of our nonlinear equalization scheme for OFDM Hammerstein channels is demonstrated by simulation results.
Resumo:
A practical single-carrier (SC) block transmission with frequency domain equalisation (FDE) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such Hammerstein channels, the standard SC-FDE scheme no longer works. We propose a novel Bspline neural network based nonlinear SC-FDE scheme for Hammerstein channels. In particular, we model the nonlinear HPA, which represents the complex-valued static nonlinearity of the Hammerstein channel, by two real-valued B-spline neural networks, one for modelling the nonlinear amplitude response of the HPA and the other for the nonlinear phase response of the HPA. We then develop an efficient alternating least squares algorithm for estimating the parameters of the Hammerstein channel, including the channel impulse response coefficients and the parameters of the two B-spline models. Moreover, we also use another real-valued B-spline neural network to model the inversion of the HPA’s nonlinear amplitude response, and the parameters of this inverting B-spline model can be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse Bspline neural network model obtained in time domain. The effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels is demonstrated in a simulation study.
Resumo:
High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-rate communication systems suffers from a drawback of high peak-toaverage power ratio, which may cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel impulse response (CIR) coefficients and the parameters of the B-spline neural network that models the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline neural network model. Furthermore, during the data communication phase, the decision-directed LS channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.
Resumo:
The detection of anthropogenic climate change can be improved by recognising the seasonality in the climate change response. This is demonstrated for the North Atlantic jet (zonal wind at 850 hPa, U850) and European precipitation responses projected by the CMIP5 climate models. The U850 future response is characterised by a marked seasonality: an eastward extension of the North Atlantic jet into Europe in November-April, and a poleward shift in May-October. Under the RCP8.5 scenario, the multi-model mean response in U850 in these two extended seasonal means emerges by 2035-2040 for the lower--latitude features and by 2050-2070 for the higher--latitude features, relative to the 1960-1990 climate. This is 5-15 years earlier than when evaluated in the traditional meteorological seasons (December--February, June--August), and it results from an increase in the signal to noise ratio associated with the spatial coherence of the response within the extended seasons. The annual mean response lacks important information on the seasonality of the response without improving the signal to noise ratio. The same two extended seasons are demonstrated to capture the seasonality of the European precipitation response to climate change and to anticipate its emergence by 10-20 years. Furthermore, some of the regional responses, such as the Mediterranean precipitation decline and the U850 response in North Africa in the extended winter, are projected to emerge by 2020-2025, according to the models with a strong response. Therefore, observations might soon be useful to test aspects of the atmospheric circulation response predicted by some of the CMIP5 models.
Resumo:
It has been suggested that the Sun may evolve into a period of lower activity over the 21st century. This study examines the potential climate impacts of the onset of an extreme ‘Maunder Minimum like’ grand solar minimum using a comprehensive global climate model. Over the second half of the 21st century, the scenario assumes a decrease in total solar irradiance of 0.12% compared to a reference RCP8.5 experiment. The decrease in solar irradiance cools the stratopause (~1 hPa) in the annual and global mean by 1.4 K. The impact on global mean near-surface temperature is small (~−0.1 K), but larger changes in regional climate occur during the stratospheric dynamically active seasons. In Northern hemisphere (NH) winter-time, there is a weakening of the stratospheric westerly jet by up to ~3-4 m s1, with the largest changes occurring in January-February. This is accompanied by a deepening of the Aleutian low at the surface and an increase in blocking over northern Europe and the north Pacific. There is also an equatorward shift in the Southern hemisphere (SH) midlatitude eddy-driven jet in austral spring. The occurrence of an amplified regional response during winter and spring suggests a contribution from a top-down pathway for solar-climate coupling; this is tested using an experiment in which ultraviolet (200–320 nm) radiation is decreased in isolation of other changes. The results show that a large decline in solar activity over the 21st century could have important impacts on the stratosphere and regional surface climate.
Resumo:
In animal models, prenatal and postnatal stress is associated with elevated hypothalamic–pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life.
Resumo:
The relationship between springtime air pollution transport of ozone (O3) and carbon monoxide (CO) and mid-latitude cyclones is explored for the first time using the Monitoring Atmospheric Composition and Climate (MACC) reanalysis for the period 2003–2012. In this study, the most intense spring storms (95th percentile) are selected for two regions, the North Pacific (NP) and the North Atlantic (NA). These storms (∼60 storms over each region) often track over the major emission sources of East Asia and eastern North America. By compositing the storms, the distributions of O3 and CO within a "typical" intense storm are examined. We compare the storm-centered composite to background composites of "average conditions" created by sampling the reanalysis data of the previous year to the storm locations. Mid-latitude storms are found to redistribute concentrations of O3 and CO horizontally and vertically throughout the storm. This is clearly shown to occur through two main mechanisms: (1) vertical lifting of CO-rich and O3-poor air isentropically, from near the surface to the mid- to upper-troposphere in the region of the warm conveyor belt; and (2) descent of O3-rich and CO-poor air isentropically in the vicinity of the dry intrusion, from the stratosphere toward the mid-troposphere. This can be seen in the composite storm's life cycle as the storm intensifies, with area-averaged O3 (CO) increasing (decreasing) between 200 and 500 hPa. The influence of the storm dynamics compared to the background environment on the composition within an area around the storm center at the time of maximum intensity is as follows. Area-averaged O3 at 300 hPa is enhanced by 50 and 36% and by 11 and 7.6% at 500 hPa for the NP and NA regions, respectively. In contrast, area-averaged CO at 300 hPa decreases by 12% for NP and 5.5% for NA, and area-averaged CO at 500 hPa decreases by 2.4% for NP while there is little change over the NA region. From the mid-troposphere, O3-rich air is clearly seen to be transported toward the surface, but the downward transport of CO-poor air is not discernible due to the high levels of CO in the lower troposphere. Area-averaged O3 is slightly higher at 1000 hPa (3.5 and 1.8% for the NP and NA regions, respectively). There is an increase of CO at 1000 hPa for the NP region (3.3%) relative to the background composite and a~slight decrease in area-averaged CO for the NA region at 1000 hPa (-2.7%).
Resumo:
The Arctic sea ice retreat has accelerated over the last decade. The negative trend is largest in summer, but substantial interannual variability still remains. Here we explore observed atmospheric conditions and feedback mechanisms during summer months of anomalous sea ice melt in the Arctic. Compositing months of anomalous low and high sea ice melt over 1979–2013, we find distinct patterns in atmospheric circulation, precipitation, radiation, and temperature. Compared to summer months of anomalous low sea ice melt, high melt months are characterized by anomalous high sea level pressure in the Arctic (up to 7 hPa), with a corresponding tendency of storms to track on a more zonal path. As a result, the Arctic receives less precipitation overall and 39% less snowfall. This lowers the albedo of the region and reduces the negative feedback the snowfall provides for the sea ice. With an anticyclonic tendency, 12 W/m2 more incoming shortwave radiation reaches the surface in the start of the season. The melting sea ice in turn promotes cloud development in the marginal ice zones and enhances downwelling longwave radiation at the surface toward the end of the season. A positive cloud feedback emerges. In midlatitudes, the more zonally tracking cyclones give stormier, cloudier, wetter, and cooler summers in most of northern Europe and around the Sea of Okhotsk. Farther south, the region from the Mediterranean Sea to East Asia experiences significant surface warming (up to 2.4◦C), possibly linked to changes in the jet stream.
Resumo:
Animal studies find that prenatal stress is associated with increased physiological and emotional reactivity later in life, mediated via fetal programming of the HPA axis through decreased glucocorticoid receptor (GR) gene expression. Post-natal behaviours, notably licking and grooming in rats, cause decreased behavioural indices of fear and reduced HPA axis reactivity mediated via increased GR gene expression. Post-natal maternal behaviours may therefore be expected to modify prenatal effects, but this has not previously been examined in humans. We examined whether, according to self-report, maternal stroking over the first weeks of life modified associations between prenatal depression and physiological and behavioral outcomes in infancy, hence mimicking effects of rodent licking and grooming. From a general population sample of 1233 first time mothers recruited at 20 weeks gestation we drew a stratified random sample of 316 for assessment at 32 weeks based on reported inter-partner psychological abuse, a risk to child development. Of these 271 provided data at 5, 9 and 29 weeks post delivery. Mothers reported how often they stroked their babies at 5 and 9 weeks. At 29 weeks vagal withdrawal to a stressor, a measure of physiological adaptability, and maternal reported negative emotionality were assessed. There was a significant interaction between prenatal depression and maternal stroking in the prediction of vagal reactivity to a stressor (p = .01), and maternal reports of infant anger proneness (p = .007) and fear (p = .043). Increasing maternal depression was associated with decreasing physiological adaptability, and with increasing negative emotionality, only in the presence of low maternal stroking. These initial findings in humans indicate that maternal stroking in infancy, as reported by mothers, has effects strongly resembling the effects of observed maternal behaviours in animals, pointing to future studies of the epigenetic, physiological and behavioral effects of maternal stroking.
Resumo:
Ice supersaturation (ISS) in the upper troposphere and lower stratosphere is important for the formation of cirrus clouds and long-lived contrails. Cold ISS (CISS) regions (taken here to be ice-supersaturated regions with temperature below 233 K) are most relevant for contrail formation.We analyse projected changes to the 250 hPa distribution and frequency of CISS regions over the 21st century using data from the Representative Concentration Pathway 8.5 simulations for a selection of Coupled Model Intercomparison Project Phase 5 models. The models show a global-mean, annual-mean decrease in CISS frequency by about one-third, from 11 to 7% by the end of the 21st century, relative to the present-day period 1979–2005. Changes are analysed in further detail for three subregions where air traffic is already high and increasing (Northern Hemisphere mid-latitudes) or expected to increase (tropics and Northern Hemisphere polar regions). The largest change is seen in the tropics, where a reduction of around 9 percentage points in CISS frequency by the end of the century is driven by the strong warming of the upper troposphere. In the Northern Hemisphere mid-latitudes the multi-model-mean change is an increase in CISS frequency of 1 percentage point; however the sign of the change is dependent not only on the model but also on latitude and season. In the Northern Hemisphere polar regions there is an increase in CISS frequency of 5 percentage points in the annual mean. These results suggest that, over the 21st century, climate change may have large impacts on the potential for contrail formation; actual changes to contrail cover will also depend on changes to the volume of air traffic, aircraft technology and flight routing.
Resumo:
COCO-2 is a model for assessing the potential economic costs likely to arise off-site following an accident at a nuclear reactor. COCO-2 builds on work presented in the model COCO-1 developed in 1991 by considering economic effects in more detail, and by including more sources of loss. Of particular note are: the consideration of the directly affected local economy, indirect losses that stem from the directly affected businesses, losses due to changes in tourism consumption, integration with the large body of work on recovery after an accident and a more systematic approach to health costs. The work, where possible, is based on official data sources for reasons of traceability, maintenance and ease of future development. This report describes the methodology and discusses the results of an example calculation. Guidance on how the base economic data can be updated in the future is also provided.
Resumo:
Climate models indicate a future wintertime precipitation reduction in the Mediterranean region but there is large uncertainty in the amplitude of the projected change. We analyse CMIP5 climate model output to quantify the role of atmospheric circulation in the Mediterranean precipitation change. It is found that a simple circulation index, i.e. the 850 hPa zonal wind (U850) in North Africa, well describes the year to year fluctuations in the area-averaged Mediterranean precipitation, with positive (i.e. westerly) U850 anomalies in North Africa being associated with positive precipitation anomalies. Under climate change, U850 in North Africa and the Mediterranean precipitation are both projected to decrease consistently with the relationship found in the inter-annual variability. This enables us to estimate that about 85% of the CMIP5 mean precipitation response and 80% of the variance in the inter-model spread are related to changes in the atmospheric circulation. In contrast, there is no significant correlation between the mean precipitation response and the global-mean surface warming across the models. It follows that the uncertainty in cold-season Mediterranean precipitation projection will not be narrowed unless the uncertainty in the atmospheric circulation response is reduced.