220 resultados para storm impacts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The winter climate of Europe and the Mediterranean is dominated by the weather systems of the mid-latitude storm tracks. The behaviour of the storm tracks is highly variable, particularly in the eastern North Atlantic, and has a profound impact on the hydroclimate of the Mediterranean region. A deeper understanding of the storm tracks and the factors that drive them is therefore crucial for interpreting past changes in Mediterranean climate and the civilizations it has supported over the last 12 000 years (broadly the Holocene period). This paper presents a discussion of how changes in climate forcing (e.g. orbital variations, greenhouse gases, ice sheet cover) may have impacted on the ‘basic ingredients’ controlling the mid-latitude storm tracks over the North Atlantic and the Mediterranean on intermillennial time scales. Idealized simulations using the HadAM3 atmospheric general circulation model (GCM) are used to explore the basic processes, while a series of timeslice simulations from a similar atmospheric GCM coupled to a thermodynamic slab ocean (HadSM3) are examined to identify the impact these drivers have on the storm track during the Holocene. The results suggest that the North Atlantic storm track has moved northward and strengthened with time since the Early to Mid-Holocene. In contrast, the Mediterranean storm track may have weakened over the same period. It is, however, emphasized that much remains still to be understood about the evolution of the North Atlantic and Mediterranean storm tracks during the Holocene period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature is one of the most prominent environmental factors that determine plant growth, devel- opment, and yield. Cool and moist conditions are most favorable for wheat. Wheat is likely to be highly vulnerable to further warming because currently the temperature is already close to or above optimum. In this study, the impacts of warming and extreme high temperature stress on wheat yield over China were investigated by using the general large area model (GLAM) for annual crops. The results showed that each 1±C rise in daily mean temperature would reduce the average wheat yield in China by about 4.6%{5.7% mainly due to the shorter growth duration, except for a small increase in yield at some grid cells. When the maximum temperature exceeded 30.5±C, the simulated grain-set fraction declined from 1 at 30.5±C to close to 0 at about 36±C. When the total grain-set was lower than the critical fractional grain-set (0.575{0.6), harvest index and potential grain yield were reduced. In order to reduce the negative impacts of warming, it is crucial to take serious actions to adapt to the climate change, for example, by shifting sowing date, adjusting crop distribution and structure, breeding heat-resistant varieties, and improving the monitoring, forecasting, and early warning of extreme climate events.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant challenge in the prediction of climate change impacts on ecosystems and biodiversity is quantifying the sources of uncertainty that emerge within and between different models. Statistical species niche models have grown in popularity, yet no single best technique has been identified reflecting differing performance in different situations. Our aim was to quantify uncertainties associated with the application of 2 complimentary modelling techniques. Generalised linear mixed models (GLMM) and generalised additive mixed models (GAMM) were used to model the realised niche of ombrotrophic Sphagnum species in British peatlands. These models were then used to predict changes in Sphagnum cover between 2020 and 2050 based on projections of climate change and atmospheric deposition of nitrogen and sulphur. Over 90% of the variation in the GLMM predictions was due to niche model parameter uncertainty, dropping to 14% for the GAMM. After having covaried out other factors, average variation in predicted values of Sphagnum cover across UK peatlands was the next largest source of variation (8% for the GLMM and 86% for the GAMM). The better performance of the GAMM needs to be weighed against its tendency to overfit the training data. While our niche models are only a first approximation, we used them to undertake a preliminary evaluation of the relative importance of climate change and nitrogen and sulphur deposition and the geographic locations of the largest expected changes in Sphagnum cover. Predicted changes in cover were all small (generally <1% in an average 4 m2 unit area) but also highly uncertain. Peatlands expected to be most affected by climate change in combination with atmospheric pollution were Dartmoor, Brecon Beacons and the western Lake District.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blanket peatlands are rain-fed mires that cover the landscape almost regardless of topography. The geographical extent of this type of peatland is highly sensitive to climate. We applied a global process-based bioclimatic envelope model, PeatStash, to predict the distribution of British blanket peatlands. The model captures the present areal extent (Kappa = 0.77) and is highly sensitive to both temperature and precipitation changes. When the model is run using the UKCIP02 climate projections for the time periods 2011–2040, 2041–2070 and 2071–2100, the geographical distribution of blanket peatlands gradually retreats towards the north and the west. In the UKCIP02 high emissions scenario for 2071–2100, the blanket peatland bioclimatic space is ~84% smaller than contemporary conditions (1961–1990); only parts of the west of Scotland remain inside this space. Increasing summer temperature is the main driver of the projected changes in areal extent. Simulations using 7 climate model outputs resulted in generally similar patterns of declining aereal extent of the bioclimatic space, although differing in degree. The results presented in this study should be viewed as a first step towards understanding the trends likely to affect the blanket peatland distribution in Great Britain. The eventual fate of existing blanket peatlands left outside their bioclimatic space remains uncertain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg1 of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review assesses the impacts, both direct and indirect, of man-made changes to the composition of the air over a 200 year period on the severity of arable crop disease epidemics. The review focuses on two well-studied UK arable crops,wheat and oilseed rape, relating these examples to worldwide food security. In wheat, impacts of changes in concentrations of SO2 in air on two septoria diseases are discussed using data obtained from historical crop samples and unpublished experimental work. Changes in SO2 seem to alter septoria disease spectra both through direct effects on infection processes and through indirect effects on soil S status. Work on the oilseed rape diseases phoma stem canker and light leaf spot illustrates indirect impacts of increasing concentrations of greenhouse gases, mediated through climate change. It is projected that, by the 2050s, if diseases are not controlled, climate change will increase yields in Scotland but halve yields in southern England. These projections are discussed in relation to strategies for adaptation to environmental change. Since many strategies take10–15 years to implement, it is important to take appropriate decisions soon. Furthermore, it is essential to make appropriate investment in collation of long-term data, modelling and experimental work to guide such decision-making by industry and government, as a contribution to worldwide food security.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a preface to this Special Issue on the results of the QUEST-GSI (Global Scale Impacts) project on climate change impacts on catchment-scale water resources. A detailed description of the unified methodology, subsequently used in all studies in this issue, is provided. The project method involved running simulations of catchment-scale hydrology using a unified set of past and future climate scenarios, to enable a consistent analysis of the climate impacts around the globe. These scenarios include "policy-relevant" prescribed warming scenarios. This is followed by a synthesis of the key findings. Overall, the studies indicate that in most basins the models project substantial changes to river flow, beyond that observed in the historical record, but that in many cases there is considerable uncertainty in the magnitude and sign of the projected changes. The implications of this for adaptation activities are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty. We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4oC by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450ppm CO2e and leads to a 2oC increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8-17% of the impact in 2050 and 20-31% in 2100; with the second measure, the avoided impacts are 5-21% and 15-47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that sea-ice in the Sea of Okhotsk can be affected by local storms; in turn, the resultant sea-ice changes can affect the downstream development of storm tracks in the Pacific and possibly dampen a pre-existing North Atlantic Oscillation (NAO) signal in late winter. In this paper, a storm tracking algorithm was applied to the six hourly horizontal winds from the National Centers for Environmental Prediction (NCEP) reanalysis data from 1978(9) to 2007 and output from the atmospheric general circulation model (AGCM) ECHAM5 forced by sea-ice anomalies in the Sea of Okhotsk. The life cycle response of storms to sea-ice anomalies is investigated using various aspects of storm activity—cyclone genesis, lysis, intensity and track density. Results show that, for enhanced positive sea-ice concentrations in the Sea of Okhotsk, there is a decrease in secondary cyclogenesis, a westward shift in cyclolysis and changes in the subtropical jet are seen in the North Pacific. In the Atlantic, a pattern resembling the negative phase of the NAO is observed. This pattern is confirmed by the AGCM ECHAM5 experiments driven with above normal sea-ice anomalies in the Sea of Okhotsk

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased tidal levels and storm surges related to climate change are projected to result in extremely adverse effects on coastal regions. Predictions of such extreme and small-scale events, however, are exceedingly challenging, even for relatively short time horizons. Here we use data from observations, ERA-40 reanalysis, climate scenario simulations, and a simple feature model to find that the frequency of extreme storm surge events affecting Venice is projected to decrease by about 30% by the end of the twenty-first century. In addition, through a trend assessment based on tidal observations we found a reduction in extreme tidal levels. Extrapolating the current +17 cm/century sea level trend, our results suggest that the frequency of extreme tides in Venice might largely remain unaltered under the projected twenty-first century climate simulations.