129 resultados para reading in words to legislation
Resumo:
Ground magnetic field perturbations recorded by the CANOPUS magnetometer network in the 7 to 13 MLT sector are used to examine how reconfigurations of the dayside polar ionospheric flow take place in response to north-south changes of the IMF. During the 6-hour interval in question IMF Bz oscillates between ±7 nT with about a 1-hour period. Corresponding variations in the ground magnetic disturbance are observed which we infer are due to changes in ionospheric flow. Cross correlation of the data obtained from two ground stations at 73.5° magnetic latitude, but separated by ∼2 hours in MLT, shows that changes in the flow are initiated in the prenoon sector (∼10 MLT) and then spread outward toward dawn and dusk with a phase speed of ∼5 km s−1 over the longitude range ∼8 to 12 MLT, slowing to ∼2 km s−1 outside this range. Cross correlating the data from these ground stations with IMP 8 IMF Bz records produces a MLT variation in the ground response delay relative to the IMF which is compatible with these deduced phase speeds. We interpret these observations in terms of the ionospheric response to the onset, expansion and decay of magnetic reconnection at the dayside magnetopause.
Resumo:
Little is known about why people differ in their levels of academic motivation. This study explored the etiology of individual differences in enjoyment and self-perceived ability for several school subjects in nearly 13,000 twins aged 9 to 16 from 6 countries. The results showed a striking consistency across ages, school subjects, and cultures. Contrary to common belief, enjoyment of learning and children’s perceptions of their competence were no less heritable than cognitive ability. Genetic factors explained approximately 40% of the variance and all of the observed twins’ similarity in academic motivation. Shared environmental factors, such as home or classroom, did not contribute to the twin’s similarity in academic motivation. Environmental influences stemmed entirely from individual specific experiences.
Resumo:
Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner.
Resumo:
Fossil pollen, ancient lake sediments and archaeological evidence from Africa indicate that the Sahel and Sahara regions were considerably wetter than today during the early to middle Holocene period, about 12,000 to 5,000 years ago1–4. Vegetation associated with the modern Sahara/Sahel boundary was about 5° farther north, and there were more and larger lakes between 15 and 30° N. Simulations with climate models have shown that these wetter conditions were probably caused by changes in Earth's orbital parameters that increased the amplitude of the seasonal cycle of solar radiation in the Northern Hemisphere, enhanced the land-ocean temperature contrast, and thereby strengthened the African summer monsoon5–7. However, these simulations underestimated the consequent monsoon enhancement as inferred from palaeorecords4. Here we use a climate model to show that changes in vegetation and soil may have increased the climate response to orbital forcing. We find that replacing today's orbital forcing with that of the mid-Holocene increases summer precipitation by 12% between 15 and 22° N. Replacing desert with grassland, and desert soil with more loamy soil, further enhances the summer precipitation (by 6 and 10% respectively), giving a total precipitation increase of 28%. When the simulated climate changes are applied to a biome model, vegetation becomes established north of the current Sahara/Sahel boundary, thereby shrinking the area of the Sahara by 11% owing to orbital forcing alone, and by 20% owing to the combined influence of orbital forcing and the prescribed vegetation and soil changes. The inclusion of the vegetation and soil feedbacks thus brings the model simulations and palaeovegetation observations into closer agreement.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.
Resumo:
Prebiotics are non-digestible food ingredients that have a specific stimulatory effect upon selected populations of gut bacteria. The usual target microorganisms for prebiotic approaches are bifidobacteria. Numerous human feeding studies have shown the prebiotic influences that galactans and fructans can exert. Other candidate prebiotics are under investigation. The field is now moving towards identifying the health aspect associated with their use. Many avenues of gut related health are being researched, including reduction of diarrhoea, immune stimulation, and improved mineral bioavailability. Most current emphasis appears to be towards various parameters associated with metabolic syndrome. These include markers of insulin resistance, appetite, satiety, blood lipids and inflammatory status.
Resumo:
Real estate securities have a number of distinct characteristics that differentiate them from stocks generally. Key amongst them is that under-pinning the firms are both real as well as investment assets. The connections between the underlying macro-economy and listed real estate firms is therefore clearly demonstrated and of heightened importance. To consider the linkages with the underlying macro-economic fundamentals we extract the ‘low-frequency’ volatility component from aggregate volatility shocks in 11 international markets over the 1990-2014 period. This is achieved using Engle and Rangel’s (2008) Spline-Generalized Autoregressive Conditional Heteroskedasticity (Spline-GARCH) model. The estimated low-frequency volatility is then examined together with low-frequency macro data in a fixed-effect pooled regression framework. The analysis reveals that the low-frequency volatility of real estate securities has strong and positive association with most of the macroeconomic risk proxies examined. These include interest rates, inflation, GDP and foreign exchange rates.
Resumo:
Dynamic soundtracking presents various practical and aesthetic challenges to composers working with games. This paper presents an implementation of a system addressing some of these challenges with an affectively-driven music generation algorithm based on a second order Markov-model. The system can respond in real-time to emotional trajectories derived from 2-dimensions of affect on the circumplex model (arousal and valence), which are mapped to five musical parameters. A transition matrix is employed to vary the generated output in continuous response to the affective state intended by the gameplay.
Resumo:
Phosphorus (P) deficiency is a major problem for Australian agriculture. Development of new perennial pasture legumes that acquire or use P more efficiently than the current major perennial pasture legume, lucerne (Medicago sativa L.), is urgent. A glasshouse experiment compared the response of ten perennial herbaceous legume species to a series of P supplies ranging from 0 to 384 µg g−1 soil, with lucerne as the control. Under low-P conditions, several legumes produced more biomass than lucerne. Four species (Lotononis bainesii Baker, Kennedia prorepens F.Muell, K. prostrata R.Br, Bituminaria bituminosa (L.) C.H.Stirt) achieved maximum growth at 12 µg P g−1 soil, while other species required 24 µg P g−1. In most tested legumes, biomass production was reduced when P supply was ≥192 µg g−1, due to P toxicity, while L. bainesii and K. prorepens showed reduced biomass when P was ≥24 µg g−1 and K. prostrata at ≥48 µg P g−1 soil. B. bituminosa and Glycine canescens F.J.Herm required less soil P to achieve 0.5 g dry mass than the other species did. Lucerne performed poorly with low P supply and our results suggest that some novel perennial legumes may perform better on low-P soils.
Resumo:
Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.
Resumo:
The present study examined the effects of word length on children’s eye movement behaviour when other variables were carefully controlled. Importantly, the results showed that word length influenced children’s reading times and fixation positions on words. Furthermore, children exhibited stronger word length effects than adults in gaze durations and refixations. Adults and children generally did not differ in initial landing positions, but did differ in refixation behaviour. Overall, the results indicated that while adults and children show similar effects of word length for early measures of eye movement behaviour, differences emerge in later measures.
Transcriptomic analysis of Enterohaemorrhagic Escherichia coli O157:H7 in response to plant extracts
Resumo:
Enterohaemorrhagic Escherichia coli (EHEC) are a group of food and contact-borne pathogens responsible for haemorrhagic colitis. The bacteria can be transmitted by contaminated meat, but importantly, also by plants. The bacteria can use plants as an alternative host, where they associate with both the leaves and the roots. Colonisation in the rhizosphere of plants is thought to be the main habitat for colonisation. Four different plant species, commonly associated with EHEC outbreaks, were infected with EHEC O157:H7 isolates Sakai and TUV 93-0 over ten days to assess the colonisation potential of the bacteria in both the phyllosphere and rhizosphere of plants. The rhizosphere was found to sustain a higher population level of bacteria over time in comparison to the phyllosphere, yet both strains were unable to utilize root exudates for growth. Global gene expression changes of EHEC O157:H7 strain Sakai were measured in response to plant extracts such as leaf lysates, root exudates and leaf cell wall polysaccharides from spinach cultivar Amazon and lettuce cultivar Salinas. Microarrays analysis showed a significant change in expression of 17 % of genes on exposure to leaf lysates of spinach. A more specific response was seen to spinach leaf cell wall polysaccharides with only a 1.5 % change. In contrast, when exposed to lettuce leaf cell wall polysaccharides a higher change of 4.8 % was seen. Genes that were differentially expressed belonged to multiple functional groups, including metabolism, indicating the utilization of plant-specific polysaccharides. Several areas of further investigation have been determined from this project, including the importance of culturing bacterial strains at a relevant temperature, the proposed lack of the type III secretion system in plant colonization by EHEC O157:H7 and the utilization of plant components for growth and persistence in the plant environment.
Resumo:
Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.