153 resultados para polar stationary phases
Resumo:
Although difference-stationary (DS) and trend-stationary (TS) processes have been subject to considerable analysis, there are no direct comparisons for each being the data-generation process (DGP). We examine incorrect choice between these models for forecasting for both known and estimated parameters. Three sets of Monte Carlo simulations illustrate the analysis, to evaluate the biases in conventional standard errors when each model is mis-specified, compute the relative mean-square forecast errors of the two models for both DGPs, and investigate autocorrelated errors, so both models can better approximate the converse DGP. The outcomes are surprisingly different from established results.
Resumo:
Lipid cubic phases are complex nanostructures that form naturally in a variety of biological systems, with applications including drug delivery and nanotemplating. Most X-ray scattering studies on lipid cubic phases have used unoriented polydomain samples as either bulk gels or suspensions of micrometer-sized cubosomes. We present a method of investigating cubic phases in a new form, as supported thin films that can be analyzed using grazing incidence small-angle X-ray scattering (GISAXS). We present GISAXS data on three lipid systems: phytantriol and two grades of monoolein (research and industrial). The use of thin films brings a number of advantages. First, the samples exhibit a high degree of uniaxial orientation about the substrate normal. Second, the new morphology allows precise control of the substrate mesophase geometry and lattice parameter using a controlled temperature and humidity environment, and we demonstrate the controllable formation of oriented diamond and gyroid inverse bicontinuous cubic along with lamellar phases. Finally, the thin film morphology allows the induction of reversible phase transitions between these mesophase structures by changes in humidity on subminute time scales, and we present timeresolved GISAXS data monitoring these transformations.
Resumo:
In contrast with recent claims that the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional can provide a good description of the electronic and magnetic structures of VO2 phases [Eyert, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.016401 107, 016401 (2011)], we show here that the HSE lowest-energy solutions for both the low-temperature monoclinic (M1) phase and the high-temperature rutile (R) phase, which are obtained upon inclusion of spin polarization, are at odds with experimental observations. For the M1 phase the ground state is (but should not be) magnetic, while the ground state of the R phase, which is also spin polarized, is not (but should be) metallic. The energy difference between the low-temperature and high-temperature phases has strong discrepancies with the experimental latent heat.
Resumo:
A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.
Resumo:
This study of landscape evolution presents both new modern and palaeo process-landform data, and analyses the behaviour of the Antarctic Peninsula Ice Sheet through the Last Glacial Maximum (LGM), the Holocene and to the present day. Six sediment-landform assemblages are described and interpreted for Ulu Peninsula, James Ross Island, NE Antarctic Peninsula: (1) the Glacier Ice and Snow Assemblage; (2) the Glacigenic Assemblage, which relates to LGM sediments and comprises both erratic-poor and erratic-rich drift, deposited by cold-based and wet-based ice and ice streams respectively; (3) the Boulder Train Assemblage, deposited during a Mid-Holocene glacier readvance; (4) the Ice-cored Moraine Assemblage, found in front of small cirque glaciers; (5) the Paraglacial Assemblage including scree, pebble-boulder lags, and littoral and fluvial processes; and (6) the Periglacial Assemblage including rock glaciers, protalus ramparts, blockfields, solifluction lobes and extensive patterned ground. The interplay between glacial, paraglacial and periglacial processes in this semi-arid polar environment is important in understanding polygenetic landforms. Crucially, cold-based ice was capable of sediment and landform genesis and modification. This landsystem model can aid the interpretation of past environments, but also provides new data to aid the reconstruction of the last ice sheet to overrun James Ross Island.
Resumo:
Polar lows are maritime meso-cyclones associated with intense surface wind speeds and oceanic heat fluxes at high latitudes. The ability of the ERA-Interim (ERAI) reanalysis to represent polar lows in the North Atlantic is assessed by comparing ERAI and the ECMWF operational analysis for the period 2008-2011. First, the representation of a set of satellite observed polar lows over the Norwegian and Barents Seas in the operational analysis and ERAI is analysed. Then, the possibility of directly identifying and tracking the polar lows in the operational analysis and ERAI is explored using a tracking algorithm based on 850 hPa vorticity with objective identification criteria on cyclone dynamical intensity and atmospheric static stability. All but one of the satellite observed polar lows with a lifetime of at least 6 hours have an 850 hPa vorticity signature of a co-located mesocyclone in both the operational analysis and ERAI for most of their life cycles. However, the operational analysis has vorticity structures that better resemble the observed cloud patterns and stronger surface wind speed intensities compared to those in ERAI. By applying the objective identification criteria, about 55% of the satellite observed polar lows are identified and tracked in ERAI, while this fraction increases to about 70% in the operational analysis. Particularly in ERAI, the remaining observed polar lows are mainly not identified because they have too weak wind speed and vorticity intensity compared to the tested criteria. The implications of the tendency of ERAI to underestimate the polar low dynamical intensity for future studies of polar lows is discussed.
Resumo:
Predictability of the western North Pacific (WNP) summer climate associated with different El Niño–Southern Oscillation (ENSO) phases is investigated in this study based on the 1-month lead retrospective forecasts of five state-of-the-art coupled models from ENSEMBLES. During the period from 1960 to 2005, the models well capture the WNP summer climate anomalies during most of years in different ENSO phases except the La Niña decaying summers. In the El Niño developing, El Niño decaying and La Niña developing summers, the prediction skills are high for the WNP summer monsoon index (WNPMI), with the prediction correlation larger than 0.7. The high prediction skills of the lower-tropospheric circulation during these phases are found mainly over the tropical western Pacific Ocean, South China Sea and subtropical WNP. These good predictions correspond well to their close teleconnection with ENSO and the high prediction skills of tropical SSTs. By contrast, for the La Niña decaying summers, the prediction skills are considerably low with the prediction correlation for the WNPMI near to zero and low prediction skills around the Philippines and subtropical WNP. These poor predictions relate to the weak summer anomalies of the WNPMI during the La Niña decaying years and no significant connections between the WNP lower-tropospheric circulation anomalies and the SSTs over the tropical central and eastern Pacific Ocean in observations. However, the models tend to predict an apparent anomalous cyclone over the WNP during the La Niña decaying years, indicating a linearity of the circulation response over WNP in the models prediction in comparison with that during the El Niño decaying years which differs from observations. In addition, the models show considerable capability in describing the WNP summer anomalies during the ENSO neutral summers. These anomalies are related to the positive feedback between the WNP lower-tropospheric circulation and the local SSTs. The models can capture this positive feedback but with some uncertainties from different ensemble members during the ENSO neutral summers.
Resumo:
A macroscopically oriented double diamond inverse bicontinuous cubic phase (QIID) of the lipid glycerol monooleate is reversibly converted into a gyroid phase (QIIG). The initial QIID phase is prepared in the form of a film coating the inside of a capillary, deposited under flow, which produces a sample uniaxially oriented with a ⟨110⟩ axis parallel to the symmetry axis of the sample. A transformation is induced by replacing the water within the capillary tube with a solution of poly(ethylene glycol), which draws water out of the QIID sample by osmotic stress. This converts the QIID phase into a QIIG phase with two coexisting orientations, with the ⟨100⟩ and ⟨111⟩ axes parallel to the symmetry axis, as demonstrated by small-angle X-ray scattering. The process can then be reversed, to recover the initial orientation of QIID phase. The epitaxial relation between the two oriented mesophases is consistent with topologypreserving geometric pathways that have previously been hypothesized for the transformation. Furthermore, this has implications for the production of macroscopically oriented QIIG phases, in particular with applications as nanomaterial templates.
Resumo:
In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.
Resumo:
Quasi-stationary convective bands can cause large localised rainfall accumulations and are often anchored by topographic features. Here, the predictability of and mechanisms causing one such band are determined using ensembles of the Met Office Unified Model at convection-permitting resolution (1.5 km grid length). The band was stationary over the UK for 3 h and produced rainfall accumulations of up to 34 mm. The amount and location of the predicted rainfall was highly variable despite only small differences between the large-scale conditions of the ensemble members. Only three of 21 members of the control ensemble produced a stationary rain band; these three had the weakest upstream winds and hence lowest Froude number. Band formation was due to the superposition of two processes: lee-side convergence resulting from flow around an upstream obstacle and thermally forced convergence resulting from elevated heating over the upstream terrain. Both mechanisms were enhanced when the Froude number was lower. By increasing the terrain height (thus reducing the Froude number), the band became more predictable. An ensemble approach is required to successfully predict the possible occurrence of such quasi-stationary convective events because the rainfall variability is largely modulated by small variations of the large-scale flow. However, high-resolution models are required to accurately resolve the small-scale interactions of the flow with the topography upon which the band formation depends. Thus, although topography provides some predictability, the quasi-stationary convective bands anchored by it are likely to remain a forecasting challenge for many years to come.
Resumo:
This study investigated the relationship between the asymmetry in the duration of El Ni?o and La Ni?a and the length of their decaying phases. The results suggested that the duration asymmetry comes from the long decaying ENSO cases rather than the short decaying ones. The evolutions of short decaying El Ni?o and La Ni?a are approximately a mirror image with a rapid decline in the following summer for the warm and cold events. However, a robust asymmetry was found in long decaying cases, with a prolonged and re-intensified La Ni?a in the following winter. The asymmetry for long decaying cases starts from the westward extension of the zonal wind anomalies in a mature winter, and is further contributed to by the air-sea interaction over the tropical Pacific in the following seasons.
Resumo:
Purpose – Multinationals have always needed an operating model that works – an effective plan for executing their most important activities at the right levels of their organization, whether globally, regionally or locally. The choices involved in these decisions have never been obvious, since international firms have consistently faced trade‐offs between tailoring approaches for diverse local markets and leveraging their global scale. This paper seeks a more in‐depth understanding of how successful firms manage the global‐local trade‐off in a multipolar world. Design methodology/approach – This paper utilizes a case study approach based on in‐depth senior executive interviews at several telecommunications companies including Tata Communications. The interviews probed the operating models of the companies we studied, focusing on their approaches to organization structure, management processes, management technologies (including information technology (IT)) and people/talent. Findings – Successful companies balance global‐local trade‐offs by taking a flexible and tailored approach toward their operating‐model decisions. The paper finds that successful companies, including Tata Communications, which is profiled in‐depth, are breaking up the global‐local conundrum into a set of more manageable strategic problems – what the authors call “pressure points” – which they identify by assessing their most important activities and capabilities and determining the global and local challenges associated with them. They then design a different operating model solution for each pressure point, and repeat this process as new strategic developments emerge. By doing so they not only enhance their agility, but they also continually calibrate that crucial balance between global efficiency and local responsiveness. Originality/value – This paper takes a unique approach to operating model design, finding that an operating model is better viewed as several distinct solutions to specific “pressure points” rather than a single and inflexible model that addresses all challenges equally. Now more than ever, developing the right operating model is at the top of multinational executives' priorities, and an area of increasing concern; the international business arena has changed drastically, requiring thoughtfulness and flexibility instead of standard formulas for operating internationally. Old adages like “think global and act local” no longer provide the universal guidance they once seemed to.
Resumo:
Using data from the EISCAT (European Incoherent Scatter) VHF and CUTLASS (Co-operative UK Twin- Located Auroral Sounding System) HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005). It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002), were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00–12:00 MLT) did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1) concentration enhancement within the patches by cusp/cleft precipitation; (2) plasma depletion in the minima between the patches by fast plasma flows; and (3) intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3) is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2) also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000).
Resumo:
Extended cusp-like regions (ECRs) are surveyed, as observed by the Magnetospheric Ion Composition Sensor (MICS) of the Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE) instrument aboard Polar between 1996 and 1999. The first of these ECR events was observed on 29 May 1996, an event widely discussed in the literature and initially thought to be caused by tail lobe reconnection due to the coinciding prolonged interval of strong northward IMF. ECRs are characterized here by intense fluxes of magnetosheath-like ions in the energy-per-charge range of _1 to 10 keV e_1. We investigate the concurrence of ECRs with intervals of prolonged (lasting longer than 1 and 3 hours) orientations of the IMF vector and high solar wind dynamic pressure (PSW). Also investigated is the opposite concurrence, i.e., of the IMF and high PSW with ECRs. (Note that these surveys are asking distinctly different questions.) The former survey indicates that ECRs have no overall preference for any orientation of the IMF. However, the latter survey reveals that during northward IMF, particularly when accompanied by high PSW, ECRs are more likely. We also test for orbital and seasonal effects revealing that Polar has to be in a particular region to observe ECRs and that they occur more frequently around late spring. These results indicate that ECRs have three distinct causes and so can relate to extended intervals in (1) the cusp on open field lines, (2) the magnetosheath, and (3) the magnetopause indentation at the cusp, with the latter allowing magnetosheath plasma to approach close to the Earth without entering the magnetosphere.