122 resultados para phylogeography, consensus approach, ensemble modeling, Pleistocene, ENM, ecological niche modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis step of the (ensemble) Kalman filter is optimal when (1) the distribution of the background is Gaussian, (2) state variables and observations are related via a linear operator, and (3) the observational error is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing step known as Gaussian anamorphosis (GA) can be applied. The objective of this procedure is to obtain state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state variable/observation space. First, we study transformations for state variables and observations that are independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment on the multivariate one. A key point of this paper is that, when (1)-(3) are violated, using the analysis step of the EnKF will not recover the exact posterior density in spite of any transformations one may perform. These transformations, however, provide approximations of different quality to the Bayesian solution of the problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA options. The value of the targeted joint transformation is particularly clear for the case when the prior is Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, the original benchmarking methodology of the Sustainable Value approach became subjected to serious debate. While Kuosmanen and Kuosmanen (2009b) critically question its validity introducing productive efficiency theory, Figge and Hahn (2009) put forward that the implementation of productive efficiency theory severely conflicts with the original financial economics perspective of the Sustainable Value approach. We argue that the debate is very confusing because the original Sustainable Value approach presents two largely incompatible objectives. Nevertheless, we maintain that both ways of benchmarking could provide useful and moreover complementary insights. If one intends to present the overall resource efficiency of the firm from the investor's viewpoint, we recommend the original benchmarking methodology. If one on the other hand aspires to create a prescriptive tool setting up some sort of reallocation scheme, we advocate implementation of the productive efficiency theory. Although the discussion on benchmark application is certainly substantial, we should avoid the debate to become accordingly narrowed. Next to the benchmark concern, we see several other challenges considering the development of the Sustainable Value approach: (1) a more systematic resource selection, (2) the inclusion of the value chain and (3) additional analyses related to policy in order to increase interpretative power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20-45%) of the global land grid points, particularly in areas where the hydro-graph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5-30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well-known that social insects such as ants show interesting collective behaviors. How do they organize such behaviors? To expand understanding of collective behaviors of social insects, we focused on ants, Diacamma, and analyzed the behavior of a few individuals. In an experimental set-up, ants are placed in hemisphere without a nest and food and the trajectory of ants is recorded. From this bottom-up approach, we found following characteristics: 1. Activity of individuals increases and decreases periodically. 2. Spontaneous meeting process is observed between two ants and meeting spot of two ants is localized in the experimental field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Agri-environment schemes remain a controversial approach to reversing biodiversity losses, partly because the drivers of variation in outcomes are poorly understood. In particular, there is a lack of studies that consider both social and ecological factors. 2. We analysed variation across 48 farms in the quality and biodiversity outcomes of agri-environmental habitats designed to provide pollen and nectar for bumblebees and butterflies or winter seed for birds. We used interviews and ecological surveys to gather data on farmer experience and understanding of agri-environment schemes, and local and landscape environmental factors. 3. Multimodel inference indicated social factors had a strong impact on outcomes and that farmer experiential learning was a key process. The quality of the created habitat was affected positively by the farmer’s previous experience in environmental management. The farmer’s confidence in their ability to carry out the required management was negatively related to the provision of floral resources. Farmers with more wildlife-friendly motivations tended to produce more floral resources, but fewer seed resources. 4. Bird, bumblebee and butterfly biodiversity responses were strongly affected by the quantity of seed or floral resources. Shelter enhanced biodiversity directly, increased floral resources and decreased seed yield. Seasonal weather patterns had large effects on both measures. Surprisingly, larger species pools and amounts of semi-natural habitat in the surrounding landscape had negative effects on biodiversity, which may indicate use by fauna of alternative foraging resources. 5. Synthesis and application. This is the first study to show a direct role of farmer social variables on the success of agri-environment schemes in supporting farmland biodiversity. It suggests that farmers are not simply implementing agri-environment options, but are learning and improving outcomes by doing so. Better engagement with farmers and working with farmers who have a history of environmental management may therefore enhance success. The importance of a number of environmental factors may explain why agri-environment outcomes are variable, and suggests some – such as the weather – cannot be controlled. Others, such as shelter, could be incorporated into agri-environment prescriptions. The role of landscape factors remains complex and currently eludes simple conclusions about large-scale targeting of schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing demand in higher education institutions for training in complex environmental problems. Such training requires a careful mix of conventional methods and innovative solutions, a task not always easy to accomplish. In this paper we review literature on this theme, highlight relevant advances in the pedagogical literature, and report on some examples resulting from our recent efforts to teach complex environmental issues. The examples range from full credit courses in sustainable development and research methods to project-based and in-class activity units. A consensus from the literature is that lectures are not sufficient to fully engage students in these issues. A conclusion from the review of examples is that problem-based and project-based, e.g., through case studies, experiential learning opportunities, or real-world applications, learning offers much promise. This could greatly be facilitated by online hubs through which teachers, students, and other members of the practitioner and academic community share experiences in teaching and research, the way that we have done here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological forecasting is difficult but essential, because reactive management results in corrective actions that are often too late to avert significant environmental damage. Here, we appraise different forecasting methods with a particular focus on the modelling of species populations. We show how simple extrapolation of current trends in state is often inadequate because environmental drivers change in intensity over time and new drivers emerge. However, statistical models, incorporating relationships with drivers, simply offset the prediction problem, requiring us to forecast how the drivers will themselves change over time. Some authors approach this problem by focusing in detail on a single driver, whilst others use ‘storyline’ scenarios, which consider projected changes in a wide range of different drivers. We explain why both approaches are problematic and identify a compromise to model key drivers and interactions along with possible response options to help inform environmental management. We also highlight the crucial role of validation of forecasts using independent data. Although these issues are relevant for all types of ecological forecasting, we provide examples based on forecasts for populations of UK butterflies. We show how a high goodness-of-fit for models used to calibrate data is not sufficient for good forecasting. Long-term biological recording schemes rather than experiments will often provide data for ecological forecasting and validation because these schemes allow capture of landscape-scale land-use effects and their interactions with other drivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multibiometrics aims at improving biometric security in presence of spoofing attempts, but exposes a larger availability of points of attack. Standard fusion rules have been shown to be highly sensitive to spoofing attempts – even in case of a single fake instance only. This paper presents a novel spoofing-resistant fusion scheme proposing the detection and elimination of anomalous fusion input in an ensemble of evidence with liveness information. This approach aims at making multibiometric systems more resistant to presentation attacks by modeling the typical behaviour of human surveillance operators detecting anomalies as employed in many decision support systems. It is shown to improve security, while retaining the high accuracy level of standard fusion approaches on the latest Fingerprint Liveness Detection Competition (LivDet) 2013 dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theories on the link between achievement goals and achievement emotions focus on their within-person functional relationship (i.e., intraindividual relations). However, empirical studies have failed to analyze these intraindividual relations and have instead examined between-person covariation of the two constructs (i.e., interindividual relations). Aiming to better connect theory and empirical research, the present study (N = 120 10th grade students) analyzed intraindividual relations by assessing students’ state goals and emotions using experience sampling (N = 1,409 assessments within persons). In order to replicate previous findings on interindividual relations, students’ trait goals and emotions were assessed using self-report questionnaires. Despite being statistically independent, both types of relations were consistent with theoretical expectations, as shown by multi-level modeling: Mastery goals were positive predictors of enjoyment and negative predictors of boredom and anger; performance-approach goals were positive predictors of pride; and performance-avoidance goals were positive predictors of anxiety and shame. Reasons for the convergence of intra- and interindividual findings, directions for future research, and implications for educational practice are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses an important issue related to the implementation and interpretation of the analysis scheme in the ensemble Kalman filter . I t i s shown that the obser vations must be treated as random variables at the analysis steps. That is, one should add random perturbations with the correct statistics to the obser vations and generate an ensemble of obser vations that then is used in updating the ensemble of model states. T raditionally , this has not been done in previous applications of the ensemble Kalman filter and, as will be shown, this has resulted in an updated ensemble with a variance that is too low . This simple modification of the analysis scheme results in a completely consistent approach if the covariance of the ensemble of model states is interpreted as the prediction error covariance, and there are no further requirements on the ensemble Kalman filter method, except for the use of an ensemble of sufficient size. Thus, there is a unique correspondence between the error statistics from the ensemble Kalman filter and the standard Kalman filter approach

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of four eddy-permitting global ocean reanalyses produced in the framework of the MyOcean project have been compared over the altimetry period 1993–2011. The main differences among the reanalyses used here come from the data assimilation scheme implemented to control the ocean state by inserting reprocessed observations of sea surface temperature (SST), in situ temperature and salinity profiles, sea level anomaly and sea-ice concentration. A first objective of this work includes assessing the interannual variability and trends for a series of parameters, usually considered in the community as essential ocean variables: SST, sea surface salinity, temperature and salinity averaged over meaningful layers of the water column, sea level, transports across pre-defined sections, and sea ice parameters. The eddy-permitting nature of the global reanalyses allows also to estimate eddy kinetic energy. The results show that in general there is a good consistency between the different reanalyses. An intercomparison against experiments without data assimilation was done during the MyOcean project and we conclude that data assimilation is crucial for correctly simulating some quantities such as regional trends of sea level as well as the eddy kinetic energy. A second objective is to show that the ensemble mean of reanalyses can be evaluated as one single system regarding its reliability in reproducing the climate signals, where both variability and uncertainties are assessed through the ensemble spread and signal-to-noise ratio. The main advantage of having access to several reanalyses differing in the way data assimilation is performed is that it becomes possible to assess part of the total uncertainty. Given the fact that we use very similar ocean models and atmospheric forcing, we can conclude that the spread of the ensemble of reanalyses is mainly representative of our ability to gauge uncertainty in the assimilation methods. This uncertainty changes a lot from one ocean parameter to another, especially in global indices. However, despite several caveats in the design of the multi-system ensemble, the main conclusion from this study is that an eddy-permitting multi-system ensemble approach has become mature and our results provide a first step towards a systematic comparison of eddy-permitting global ocean reanalyses aimed at providing robust conclusions on the recent evolution of the oceanic state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an ensemble of global ocean reanalyses. The first leading EOF mode represents the interannual MLD anomalies centered in the eastern part of the central mode water formation region in phase opposition with those in the eastern subtropics and the central Alaskan Gyre. This first EOF mode is highly correlated with the Pacific decadal oscillation index on both the interannual and decadal time scales. The second leading EOF mode represents the MLD variability in the subtropical mode water (STMW) formation region and has a good correlation with the wintertime West Pacific (WP) index with time lag of 3 years, suggesting the importance of the oceanic dynamical response to the change in the surface wind field associated with the meridional shifts of the Aleutian Low. The above MLD variabilities are in basic agreement with previous observational and modeling findings. Moreover the reanalysis ensemble provides uncertainty estimates. The interannual MLD anomalies in the first and second EOF modes are consistently represented by the individual reanalyses and the amplitudes of the variabilities generally exceed the ensemble spread of the reanalyses. Besides, the resulting MLD variability indices, spanning the 1948–2012 period, should be helpful for characterizing the North Pacific climate variability. In particular, a 6-year oscillation including the WP teleconnection pattern in the atmosphere and the oceanic MLD variability in the STMW formation region is first detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anticipation is increasingly central to urgent contemporary debates, from climate change to the global economic crisis. Anticipatory practices are coming to the forefront of political, organizational, and citizens’ society. Research into anticipation, however, has not kept pace with public demand for insights into anticipatory practices, their risks and uses. Where research exists, it is deeply fragmented. This paper seeks to identify how anticipation is defined and understood in the literature and to explore the role of anticipatory practice to address individual, social, and global challenges. We use a resilience lens to examine these questions. We illustrate how varying forms of anticipatory governance are enhanced by multi-scale regional networks and technologies and by the agency of individuals, drawing from an empirical case study on regional water governance of Mälaren, Sweden. Finally, we discuss how an anticipatory approach can inform adaptive institutions, decision making, strategy formation, and societal resilience.