133 resultados para parallel selection
Resumo:
This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.
Resumo:
Purpose – The purpose of this paper is to consider Turing's two tests for machine intelligence: the parallel-paired, three-participants game presented in his 1950 paper, and the “jury-service” one-to-one measure described two years later in a radio broadcast. Both versions were instantiated in practical Turing tests during the 18th Loebner Prize for artificial intelligence hosted at the University of Reading, UK, in October 2008. This involved jury-service tests in the preliminary phase and parallel-paired in the final phase. Design/methodology/approach – Almost 100 test results from the final have been evaluated and this paper reports some intriguing nuances which arose as a result of the unique contest. Findings – In the 2008 competition, Turing's 30 per cent pass rate is not achieved by any machine in the parallel-paired tests but Turing's modified prediction: “at least in a hundred years time” is remembered. Originality/value – The paper presents actual responses from “modern Elizas” to human interrogators during contest dialogues that show considerable improvement in artificial conversational entities (ACE). Unlike their ancestor – Weizenbaum's natural language understanding system – ACE are now able to recall, share information and disclose personal interests.
Resumo:
This paper investigates the characteristics of unaccusative verbs in Italian with respect to the consistency with which these verbs select the auxiliaries ‘be’ (essere) and ‘have’ (avere) in compound tense forms. The study builds on the gradient approach to split intransitivity (Sorace 2000) by exploring the behaviour of 29 intransitive Italian verbs with respect to their core-peripheral features: auxiliary selection acceptability ratings and associated variance measures. Although there is clear support for the gradient approach in relation to the general order of semantic categories along the unaccusativity gradient, the results reveal that the ordering of subclasses within the Change group conflict with that currently proposed in the literature. In addition, the findings demonstrate the aspectual and lexical semantic characteristics of internally-caused change-of-state verbs in Italian require further investigation before their auxiliary selection behaviour can be properly understood. Furthermore, contrary to the gradient account, Existence verbs, the most stative and therefore the most peripheral subclass in the unaccusativity hierarchy, exhibit behaviour more characteristic of core unaccusative verbs. This study examines a wider range of semantic subclasses of unaccusative verbs than has hitherto been reported and identifies the core-peripheral boundary for Italian.1
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts. However, the research does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely ‘Intelligent Agents’. In the approach considered a task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The agents hence contribute towards fault tolerance and towards building reliable systems. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.
Resumo:
Radial basis functions can be combined into a network structure that has several advantages over conventional neural network solutions. However, to operate effectively the number and positions of the basis function centres must be carefully selected. Although no rigorous algorithm exists for this purpose, several heuristic methods have been suggested. In this paper a new method is proposed in which radial basis function centres are selected by the mean-tracking clustering algorithm. The mean-tracking algorithm is compared with k means clustering and it is shown that it achieves significantly better results in terms of radial basis function performance. As well as being computationally simpler, the mean-tracking algorithm in general selects better centre positions, thus providing the radial basis functions with better modelling accuracy
Resumo:
In financial decision-making, a number of mathematical models have been developed for financial management in construction. However, optimizing both qualitative and quantitative factors and the semi-structured nature of construction finance optimization problems are key challenges in solving construction finance decisions. The selection of funding schemes by a modified construction loan acquisition model is solved by an adaptive genetic algorithm (AGA) approach. The basic objectives of the model are to optimize the loan and to minimize the interest payments for all projects. Multiple projects being undertaken by a medium-size construction firm in Hong Kong were used as a real case study to demonstrate the application of the model to the borrowing decision problems. A compromise monthly borrowing schedule was finally achieved. The results indicate that Small and Medium Enterprise (SME) Loan Guarantee Scheme (SGS) was first identified as the source of external financing. Selection of sources of funding can then be made to avoid the possibility of financial problems in the firm by classifying qualitative factors into external, interactive and internal types and taking additional qualitative factors including sovereignty, credit ability and networking into consideration. Thus a more accurate, objective and reliable borrowing decision can be provided for the decision-maker to analyse the financial options.
Resumo:
An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.
Resumo:
Analyzes the use of linear and neural network models for financial distress classification, with emphasis on the issues of input variable selection and model pruning. A data-driven method for selecting input variables (financial ratios, in this case) is proposed. A case study involving 60 British firms in the period 1997-2000 is used for illustration. It is shown that the use of the Optimal Brain Damage pruning technique can considerably improve the generalization ability of a neural model. Moreover, the set of financial ratios obtained with the proposed selection procedure is shown to be an appropriate alternative to the ratios usually employed by practitioners.
Resumo:
This paper is concerned with the use of a genetic algorithm to select financial ratios for corporate distress classification models. For this purpose, the fitness value associated to a set of ratios is made to reflect the requirements of maximizing the amount of information available for the model and minimizing the collinearity between the model inputs. A case study involving 60 failed and continuing British firms in the period 1997-2000 is used for illustration. The classification model based on ratios selected by the genetic algorithm compares favorably with a model employing ratios usually found in the financial distress literature.