127 resultados para operational parameters
Resumo:
Accident and Emergency (A&E) units provide a route for patients requiring urgent admission to acute hospitals. Public concern over long waiting times for admissions motivated this study, whose aim is to explore the factors which contribute to such delays. The paper discusses the formulation and calibration of a system dynamics model of the interaction of demand pattern, A&E resource deployment, other hospital processes and bed numbers; and the outputs of policy analysis runs of the model which vary a number of the key parameters. Two significant findings have policy implications. One is that while some delays to patients are unavoidable, reductions can be achieved by selective augmentation of resources within, and relating to, the A&E unit. The second is that reductions in bed numbers do not increase waiting times for emergency admissions, their effect instead being to increase sharply the number of cancellations of admissions for elective surgery. This suggests that basing A&E policy solely on any single criterion will merely succeed in transferring the effects of a resource deficit to a different patient group.
Resumo:
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.
Resumo:
This paper addresses the economics of Enhanced Landfill Mining (ELFM) both from a private point of view as well as from a society perspective. The private potential is assessed using a case study for which an investment model is developed to identify the impact of a broad range of parameters on the profitability of ELFM. We found that especially variations in Waste-to-Energy (WtE efficiency, electricity price, CO2-price, WtE investment and operational costs) and ELFM support explain the variation in economic profitability measured by the Internal Rate of Return. To overcome site-specific parameters we also evaluated the regional ELFM potential for the densely populated and industrial region of Flanders (north of Belgium). The total number of potential ELFM sites was estimated using a 5-step procedure and a simulation tool was developed to trade-off private costs and benefits. The analysis shows that there is a substantial economic potential for ELFM projects on the wider regional level. Furthermore, this paper also reviews the costs and benefits from a broader perspective. The carbon footprint of the case study was mapped in order to assess the project’s net impact in terms of greenhouse gas emissions. Also the impacts of nature restoration, soil remediation, resource scarcity and reduced import dependence were valued so that they can be used in future social cost-benefit analysis. Given the complex trade-off between economic, social and environmental issues of ELFM projects, we conclude that further refinement of the methodological framework and the development of the integrated decision tools supporting private and public actors, are necessary.
Resumo:
RATIONALE: An altered gastric emptying (GE) rate has been implicated in the aetiology of obesity. The (13)C-octanoic acid breath test (OBT) is frequently used to measure GE, and the cumulative percentage of (13)C recovered (cPDR) is a common outcome measure. However, true cPDR in breath is dependent on accurate measurement of carbon dioxide production rate (VCO(2)). The current study aimed to quantify differences in the (13)C OBT results obtained using directly measured VCO(2) (VCO(2DM)) compared with (i) predicted from resting VCO(2) (VCO(2PR)) and (ii) predicted from body surface area VCO(2) (VCO(2BSA)). METHODS: The GE rate of a high-fat test meal was assessed in 27 lean subjects using the OBT. Breath samples were gathered during the fasted state and at regular intervals throughout the 6-h postprandial period for determination of (13)C-isotopic enrichment by continuous-flow isotope-ratio mass spectrometry. The VCO(2) was measured directly from exhaled air samples and the PDR calculated by three methods. The bias and the limits of agreement were calculated using Bland-Altman plots. RESULTS: Compared with the VCO(2DM), the cPDR was underestimated by VCO(2PR) (4.8%; p = 0.0001) and VCO(2BSA) (2.7%; p = 0.02). The GE T(half) was underestimated by VCO(2PR) (13 min; p = 0.0001) and VCO(2BSA) (10 min; p = 0.01), compared with VCO(2DM). CONCLUSIONS: The findings highlight the importance of directly measuring VCO(2)production rates throughout the (13)C OBT and could partly explain the conflicting evidence regarding the effect of obesity on GE rates.
Resumo:
Since 1999, the National Commission for the Knowledge and Use of the Biodiversity (CONABIO) in Mexico has been developing and managing the “Operational program for the detection of hot-spots using remote sensing techniques”. This program uses images from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites and from the Advanced Very High Resolution Radiometer of the National Oceanic and Atmospheric Administration (NOAA-AVHRR), which are operationally received through the Direct Readout station (DR) at CONABIO. This allows the near-real time monitoring of fire events in Mexico and Central America. In addition to the detection of active fires, the location of hot spots are classified with respect to vegetation types, accessibility, and risk to Nature Protection Areas (NPA). Besides the fast detection of fires, further analysis is necessary due to the considerable effects of forest fires on biodiversity and human life. This fire impact assessment is crucial to support the needs of resource managers and policy makers for adequate fire recovery and restoration actions. CONABIO attempts to meet these requirements, providing post-fire assessment products as part of the management system in particular for satellite-based burnt area mapping. This paper provides an overview of the main components of the operational system and will present an outlook to future activities and system improvements, especially the development of a burnt area product. A special focus will also be placed on the fire occurrence within NPAs of Mexico
Resumo:
A procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) is proposed for operational rainfall estimation using rain gauges and radar data. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on Barnes' objective analysis scheme (OAS), whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, a spatially variable adjustment with multiplicative factors, and ordinary cokriging.
Resumo:
Scintillometry, a form of ground-based remote sensing, provides the capability to estimate surface heat fluxes over scales of a few hundred metres to kilometres. Measurements are spatial averages, making this technique particularly valuable over areas with moderate heterogeneity such as mixed agricultural or urban environments. In this study, we present the structure parameters of temperature and humidity, which can be related to the sensible and latent heat fluxes through similarity theory, for a suburban area in the UK. The fluxes are provided in the second paper of this two-part series. A millimetre-wave scintillometer was combined with an infrared scintillometer along a 5.5 km path over northern Swindon. The pairing of these two wavelengths offers sensitivity to both temperature and humidity fluctuations, and the correlation between wavelengths is also used to retrieve the path-averaged temperature–humidity correlation. Comparison is made with structure parameters calculated from an eddy covariance station located close to the centre of the scintillometer path. The performance of the measurement techniques under different conditions is discussed. Similar behaviour is seen between the two data sets at sub-daily timescales. For the two summer-to-winter periods presented here, similar evolution is displayed across the seasons. A higher vegetation fraction within the scintillometer source area is consistent with the lower Bowen ratio observed (midday Bowen ratio < 1) compared with more built-up areas around the eddy covariance station. The energy partitioning is further explored in the companion paper.
Resumo:
Operational forecasting centres are currently developing data assimilation systems for coupled atmosphere-ocean models. Strongly coupled assimilation, in which a single assimilation system is applied to a coupled model, presents significant technical and scientific challenges. Hence weakly coupled assimilation systems are being developed as a first step, in which the coupled model is used to compare the current state estimate with observations, but corrections to the atmosphere and ocean initial conditions are then calculated independently. In this paper we provide a comprehensive description of the different coupled assimilation methodologies in the context of four dimensional variational assimilation (4D-Var) and use an idealised framework to assess the expected benefits of moving towards coupled data assimilation. We implement an incremental 4D-Var system within an idealised single column atmosphere-ocean model. The system has the capability to run both strongly and weakly coupled assimilations as well as uncoupled atmosphere or ocean only assimilations, thus allowing a systematic comparison of the different strategies for treating the coupled data assimilation problem. We present results from a series of identical twin experiments devised to investigate the behaviour and sensitivities of the different approaches. Overall, our study demonstrates the potential benefits that may be expected from coupled data assimilation. When compared to uncoupled initialisation, coupled assimilation is able to produce more balanced initial analysis fields, thus reducing initialisation shock and its impact on the subsequent forecast. Single observation experiments demonstrate how coupled assimilation systems are able to pass information between the atmosphere and ocean and therefore use near-surface data to greater effect. We show that much of this benefit may also be gained from a weakly coupled assimilation system, but that this can be sensitive to the parameters used in the assimilation.
Resumo:
It is recognised that ageing induces various changes to the human colonic microbiota. Most relevant is a reduction in bifidobacteria, which is a health-positive genus. Prebiotics, such as galacto-oligosaccharides (GOS), are dietary ingredients that selectively fortify beneficial gut microbial groups. Therefore, they have the potential to reverse the age-related decline in bifidobacteria and modulate associated health parameters. We assessed the effect of GOS mixture (Bimuno (B-GOS)) on gut microbiota, markers of immune function and metabolites in forty elderly (age 65-80 years) volunteers in a randomised, double-blind, placebo (maltodextrin)-controlled, cross-over study. The intervention periods consisted of 10 weeks with daily doses of 5·5 g/d with a 4-week washout period in between. Blood and faecal samples were collected for the analyses of faecal bacterial populations and immune and metabolic biomarkers. B-GOS consumption led to significant increases in bacteroides and bifidobacteria, the latter correlating with increased lactic acid in faecal waters. Higher IL-10, IL-8, natural killer cell activity and C-reactive protein and lower IL-1β were also observed. Administration of B-GOS to elderly volunteers may be useful in positively affecting the microbiota and some markers of immune function associated with ageing.
Resumo:
Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.