119 resultados para niche packing
Resumo:
A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0–8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel.
Resumo:
By examining the discourse around Lena Dunham's HBO comedy Girls (2012– present), this article argues that the programme served as a space to think through female authorship, televisual representations and cultural tensions surrounding young womanhood. Central to this discourse was the narrative asserting Girls' and Dunham's 'authenticity', originality and universality, which sought to legitimate her gendered authorship and interest in the comedy of female intimacy within HBO' s masculine prestige channel identity. Charting three cycles of discourse surrounding the programme's debut, this article explores the paratextual framing by promotional concerns, television critics and women' s websites. It highlights how journalists and critics furthered HBO's paratextual framing of Dunham, which was later countered by the networked spaces of niche online media, which used the programme as a space to productively work through industrial and cultural tensions; particularly those surrounding female comic authorship, autobiography and intersectionality.
Resumo:
Background American mink forage on land and in water, with aquatic prey often constituting a large proportion of their diet. Their long, thin body shape and relatively poor insulation make them vulnerable to heat loss, particularly in water, yet some individuals dive over 100 times a day. At the level of individual dives, previous research found no difference in dive depth or duration, or the total number of dives per day between seasons, but mink did appear to make more dives per active hour in winter than in summer. There was also no difference in the depth or duration of individual dives between the sexes, but there was some evidence that females made more dives per day than males. However, because individual mink dives tend to be extremely short in duration, persistence (quantified as the number of consecutive dives performed) may be a more appropriate metric with which to compare diving behaviour under different scenarios. Results Mink performed up to 28 consecutive dives, and dived continually for up to 36 min. Periods of more loosely aggregated diving (termed ‘aquatic activity sessions’) comprised up to 80 dives, carried out over up to 162.8 min. Contrary to our predictions, persistence was inversely proportional to body weight, with small animals more persistent than large ones, and (for females, but not for males) increased with decreasing temperature. For both sexes, persistence was greater during the day than during the night. Conclusions The observed body weight effect may point to inter-sexual niche partitioning, since in mink the smallest animals are females and the largest are males. The results may equally point to individual specialism’s, since persistence was also highly variable among individuals. Given the energetic costs involved, the extreme persistence of some animals observed in winter suggests that the costs of occasional prolonged activity in cold water are outweighed by the energetic gains. Analysing dive persistence can provide information on an animal’s physical capabilities for performing multiple dives and may reveal how such behaviour is affected by different conditions. Further development of monitoring and biologging methodology to allow quantification of hunting success, and thus the rewards obtained under alternative scenarios, would be insightful.
Resumo:
This study investigates the quality of retail milk labelled as Jersey & Guernsey (JG) when compared with milk without breed specifications (NS) and repeatability of differences over seasons and years. 16 different brands of milk (4 Jersey & Guernsey, 12 non specified breed) were sampled over 2 years on 4 occasions. JG milk was associated with both favourable traits for human health, such as the higher total protein, total casein, α-casein, β-casein, κ-casein and α-tocopherol contents, and unfavourable traits, such as the higher concentrations of saturated fat, C12:0, C14:0 and lower concentrations of monounsaturated fatty acids. In summer, JG milk had a higher omega-3:omega-6 ratio than had NS milk. Also, the relative increase in omega-3 fatty acids and α-tocopherol, from winter to summer, was greater in JG milk. The latter characteristic could be of use in breeding schemes and farming systems producing niche dairy products. Seasonality had a more marked impact on the fatty acid composition of JG milk than had NS milk, while the opposite was found for protein composition. Potential implication for the findings in human health, producers, industry and consumers are considered.
Resumo:
Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant–soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and propose that these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance and invasion ecology.
Resumo:
Myrmecophyte plants house ants in domatia in exchange for protection from herbivores. Ant-myrmecophyte mutualisms exhibit two general patterns due to competition between ants for plant occupancy: i) domatia nest-sites are a limiting resource and ii) each individual plant hosts one ant species at a time. However, individual camelthorn trees (Vachellia erioloba) typically host two to four ant species simultaneously, often coexisting in adjacent domatia on the same branch. Such fine-grain spatial coexistence brings into question the conventional wisdom on ant-myrmecophyte mutualisms. Camelthorn ants appear not to be nest-site limited, despite low abundance of suitable domatia, and have random distributions of nest-sites within and across trees. These patterns suggest a lack of competition between ants for domatia and contrast strongly with other ant-myrmecophyte systems. Comparison of this unusual case with others suggests that spatial scale is crucial to coexistence or competitive exclusion involving multiple ant species. Furthermore, coexistence may be facilitated when co-occurring ant species diverge strongly on at least one niche axis. Our conclusions provide recommendations for future ant-myrmecophyte research, particularly in utilising multispecies systems to further our understanding of mutualism biology.
Resumo:
The products of reactions of the pharmaceutical amide carbamazepine (CBZ) with strong acids under aqueous conditions were investigated by both powder and single crystal X-ray diffraction. Despite previous claims to the contrary, it was found that salt forms with CBZ protonated at the amide O atom could be isolated from reactions with both HCl and HBr. These forms include the newly identified hydrate phase [CBZ(H)][Cl]·H O. Reactions with other mineral acids (HI and HBF ) gave ionic cocrystalline (ICC) forms (CBZ· [acridinium][I ]·2.5I and CBZ·[H O ] [BF ] ·H O) as well as the salt form CBZ·[CBZ(H)][BF ]·0.5H O. Reaction 2 4 3 2 5 2 0.25 4 0.25 2 4 2 of CBZ with a series of sulfonic acids also gave salt forms, namely, [CBZ(H)][O SC H ], [CBZ(H)][O SC H (OH)]· 3 6 5 3 6 4 0.5H O, [CBZ(H)] [O SCH CH SO ], and [CBZ(H)][O SC H (OH) (COOH)]·H O. CBZ and protonated CBZ(H) 2 2 3 2 2 3 3 6 3 2 moieties can be differentiated in the solid state both by changes to molecular geometry and by differing packing preferences
Resumo:
European beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.) are two of the most ecologically and economically important forest tree species in Europe. These two species co-occur in many locations in Europe, leading to direct competition for canopy space. Foliage characteristics of two naturally regenerated pure stands of beech and spruce with fully closed canopies were contrasted to assess the dynamic relationship between foliage adaptability to shading, stand LAI and tree growth. We found that individual leaf size is far more conservative in spruce than in beech. Individual leaf and needle area was larger at the top than at the bottom of the canopy in both species. Inverse relationship was found for specific leaf area (SLA), highest SLA values were found at lowest light availability under the canopy. There was no difference in leaf area index (LAI) between the two stands, however LAI increased from 10.8 to 14.6 m2m-2 between 2009 and 2011. Dominant trees of both species were more efficient in converting foliage mass or area to produce stem biomass, although this relationship changed with age and was species-specific. Overall, we found larger foliage plasticity in beech than in spruce in relation to light conditions, indicating larger capacity to exploit niche openings.
Resumo:
The theory of evolution by sexual selection for sexual size dimorphism (SSD) postulates that SSD primarily reflects the adaptation of males and females to their different reproductive roles. For example, competition among males for access to females increases male body size because larger males are better able to maintain dominant status than smaller males. Larger dominant males sire most offspring while smaller subordinate males are unsuccessful, leading to skew in reproductive success. Therefore, species with male-biased SSD are predicted to have greater variance in male reproductive success than those in which both sexes are similar in size. We tested this prediction among the Pinnipedia, a mammalian group with a great variation in SSD. From a literature review, we identified genetic estimates of male reproductive success for 10 pinniped taxa (eight unique species and two subspecies of a ninth species) that range from seals with similarly sized males and females to species in which males are more than four times as large as females. We found no support for a positive relationship between variance in reproductive success and SSD among pinnipeds after excluding the elephant seals Mirounga leonina and Mirounga angustirostris, which we discuss as distinctive cases. Several explanations for these results are presented, including the revival of one of Darwin's original ideas. Darwin proposed that natural selection may explain SSD based on differences in energetic requirements between sexes and the potential for sexual niche segregation. Males may develop larger bodies to exploit resources that remain unavailable to females due to the energetic constraints imposed on female mammals by gestation and lactation. The importance of this alternative explanation remains to be tested.
Resumo:
This thesis considers Participatory Crop Improvement (PCI) methodologies and examines the reasons behind their continued contestation and limited mainstreaming in conventional modes of crop improvement research within National Agricultural Research Systems (NARS). In particular, it traces the experiences of a long-established research network with over 20 years of experience in developing and implementing PCI methods across South Asia, and specifically considers its engagement with the Indian NARS and associated state-level agricultural research systems. In order to address the issues surrounding PCI institutionalisation processes, a novel conceptual framework was derived from a synthesis of the literatures on Strategic Niche Management (SNM) and Learning-based Development Approaches (LBDA) to analyse the socio-technical processes and structures which constitute the PCI ‘niche’ and NARS ‘regime’. In examining the niche and regime according to their socio-technical characteristics, the framework provides explanatory power for understanding the nature of their interactions and the opportunities and barriers that exist with respect to the translation of lessons and ideas between niche and regime organisations. The research shows that in trying to institutionalise PCI methods and principles within NARS in the Indian context, PCI proponents have encountered a number of constraints related to the rigid and hierarchical structure of the regime organisations; the contractual mode of most conventional research, which inhibits collaboration with a wider group of stakeholders; and the time-limited nature of PCI projects themselves, which limits investment and hinders scaling up of the innovations. It also reveals that while the niche projects may be able to induce a ‘weak’ form of PCI institutionalisation within the Indian NARS by helping to alter their institutional culture to be more supportive of participatory plant breeding approaches and future collaboration with PCI researchers, a ‘strong’ form of PCI institutionalisation, in which NARS organisations adopt participatory methodologies to address all their crop improvement agenda, is likely to remain outside of the capacity of PCI development projects to deliver.
Resumo:
An extensive experimental and simulation study is carried out in conventional magnetorheological fluids formulated by dispersion of mixtures of carbonyl iron particles having different sizes in Newtonian carriers. Apparent yield stress data are reported for a wide range of polydispersity indexes (PDI) from PDI = 1.63 to PDI = 3.31, which for a log-normal distribution corresponds to the standard deviation ranging from to . These results demonstrate that the effect of polydispersity is negligible in this range in spite of exhibiting very different microstructures. Experimental data in the magnetic saturation regime are in quantitative good agreement with particle-level simulations under the assumption of dipolar magnetostatic forces. The insensitivity of the yield stresses to the polydispersity can be understood from the interplay between the particle cluster size distribution and the packing density of particles inside the clusters.
Resumo:
Phenology shifts are the most widely cited examples of the biological impact of climate change, yet there are few assessments of potential effects on the fitness of individual organisms or the persistence of populations. Despite extensive evidence of climate-driven advances in phenological events over recent decades, comparable patterns across species' geographic ranges have seldom been described. Even fewer studies have quantified concurrent spatial gradients and temporal trends between phenology and climate. Here we analyse a large data set (~129 000 phenology measures) over 37 years across the UK to provide the first phylogenetic comparative analysis of the relative roles of plasticity and local adaptation in generating spatial and temporal patterns in butterfly mean flight dates. Although populations of all species exhibit a plastic response to temperature, with adult emergence dates earlier in warmer years by an average of 6.4 days per °C, among-population differences are significantly lower on average, at 4.3 days per °C. Emergence dates of most species are more synchronised over their geographic range than is predicted by their relationship between mean flight date and temperature over time, suggesting local adaptation. Biological traits of species only weakly explained the variation in differences between space-temperature and time-temperature phenological responses, suggesting that multiple mechanisms may operate to maintain local adaptation. As niche models assume constant relationships between occurrence and environmental conditions across a species' entire range, an important implication of the temperature-mediated local adaptation detected here is that populations of insects are much more sensitive to future climate changes than current projections suggest.
Resumo:
1. Bees are a functionally important and economically valuable group, but are threatened byland-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species’ ecological traits. 2. Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.3. We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation),traits and trait 9 land-use interactions, in explaining species occurrence and abundance.4. Species’ sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats.5. Synthesis and applications. Rather than targeting particular species or settings, conservation action s may be more effective if focused on mitigating situations where species’ traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.
Resumo:
Food industry is critical to any nation’s health and well-being; it is also critical to the economic health of a nation, since it can typically constitute over a fifth of the nation’s manufacturing GDP. Food Engineering is a discipline that ought to be at the heart of the food industry. Unfortunately, this discipline is not playing its rightful role today: engineering has been relegated to play the role of a service provider to the food industry, instead of it being a strategic driver for the very growth of the industry. This paper hypothesises that food engineering discipline, today, seems to be continuing the way it was in the last century, and has not risen to the challenges that it really faces. This paper therefore categorises the challenges as those being posed by: 1. Business dynamics, 2. Market forces, 3. Manufacturing environment and 4. Environmental Considerations, and finds the current scope and subject-knowledge competencies of food engineering to be inadequate in meeting these challenges. The paper identifies: a) health, b) environment and c) security as the three key drivers of the discipline, and proposes a new definition of food engineering. This definition requires food engineering to have a broader science base which includes biophysical, biochemical and health sciences, in addition to engineering sciences. This definition, in turn, leads to the discipline acquiring a new set of subject-knowledge competencies that is fit-for-purpose for this day and age, and hopefully for the foreseeable future. The possibility of this approach leading to the development of a higher education program in food engineering is demonstrated by adopting a theme based curriculum development with five core themes, supplemented by appropriate enabling and knowledge integrating courses. At the heart of this theme based approach is an attempt to combine engineering of process and product in a purposeful way, termed here as Food Product Realisation Engineering. Finally, the paper also recommends future development of two possible niche specialisation programs in Nutrition and Functional Food Engineering and Gastronomic Engineering. It is hoped that this reconceptualization of the discipline will not only make it more purposeful for the food industry, but it will also make the subject more intellectually challenging and attract bright young minds to the discipline.