127 resultados para modified starch
Resumo:
A simple storm loss model is applied to an ensemble of ECHAM5/MPI-OM1 GCM simulations in order to estimate changes of insured loss potentials over Europe in the 21st century. Losses are computed based on the daily maximum wind speed for each grid point. The calibration of the loss model is performed using wind data from the ERA40-Reanalysis and German loss data. The obtained annual losses for the present climate conditions (20C, three realisations) reproduce the statistical features of the historical insurance loss data for Germany. The climate change experiments correspond to the SRES-Scenarios A1B and A2, and for each of them three realisations are considered. On average, insured loss potentials increase for all analysed European regions at the end of the 21st century. Changes are largest for Germany and France, and lowest for Portugal/Spain. Additionally, the spread between the single realisations is large, ranging e.g. for Germany from −4% to +43% in terms of mean annual loss. Moreover, almost all simulations show an increasing interannual variability of storm damage. This assessment is even more pronounced if no adaptation of building structure to climate change is considered. The increased loss potentials are linked with enhanced values for the high percentiles of surface wind maxima over Western and Central Europe, which in turn are associated with an enhanced number and increased intensity of extreme cyclones over the British Isles and the North Sea.
Resumo:
Although sparsely populated today, the Llanos de Mojos, Bolivia, sustained large sedentary societies in the Late Holocene (ca. 500 to 1400 AD). In order to gain insight into the subsistence of these people, we undertook macrobotanical and phytolith analyses of sediment samples, and starch grain and phytolith analyses of artifact residues, from four large habitation sites within this region. Macrobotanical remains show the presence of maize (Zea mays), squash (Cucurbita sp.), peanut (Arachis hypogaea), cotton (Gossypium sp.), and palm fruits (Arecaceae). Microbotanical results confirm the widespread use of maize at all sites, along with manioc (Manihot esculenta), squash, and yam (Dioscorea sp.). These integrated results present the first comprehensive archaeobotanical evidence of the diversity of plants cultivated, processed, and consumed, by the pre-Hispanic inhabitants of the Amazonian lowlands of Bolivia.
Resumo:
The spatial structure of beta-plane Rossby waves in a sinusoidal basic zonal flow U 0cos(γ,y) is determined analytically in the (stable) asymptotic limit of weak shear, U 0γ2 0/β≈1. The propagating neutral normal modes are found to take their greatest amplitude in the region of maximum westerly flow, while their most rapid phase variation is achieved in the region of maximum easterly flow. These results are shown to be consistent with what is obtained by ray-tracing methods in the limit of small meridional disturbance wavelength.
Resumo:
Recent evidence suggests that immobilization of the upper limb for 2–3 weeks induces changes in cortical thickness as well as motor performance. In constraint induced (CI) therapy, one of the most effective interventions for hemiplegia, the non-paretic arm is constrained to enforce the use of the paretic arm in the home setting. With the present study we aimed to explore whether non-paretic arm immobilization in CI therapy induces structural changes in the non-lesioned hemisphere, and how these changes are related to treatment benefit. 31 patients with chronic hemiparesis participated in CI therapy with (N = 14) and without (N = 17) constraint. Motor ability scores were acquired before and after treatment. Diffusion tensor imaging (DTI) data was obtained prior to treatment. Cortical thickness was measured with the Freesurfer software. In both groups cortical thickness in the contralesional primary somatosensory cortex increased and motor function improved with the intervention. However the cortical thickness change was not associated with the magnitude of motor function improvement. Moreover, the treatment effect and the cortical thickness change were not significantly different between the constraint and the non-constraint groups. There was no correlation between fractional anisotropy changes in the non-lesioned hemisphere and treatment outcome. CI therapy induced cortical thickness changes in contralesional sensorimotor regions, but this effect does not appear to be driven by the immobilization of the non-paretic arm, as indicated by the absence of differences between the constraint and the non-constraint groups. Our data does not suggest that the arm immobilization used in CI therapy is associated with noticeable cortical thinning.
Resumo:
An updated empirical approach is proposed for specifying coexistence requirements for genetically modified (GM) maize (Zea mays L.) production to ensure compliance with the 0.9% labeling threshold for food and feed in the European Union. The model improves on a previously published (Gustafson et al., 2006) empirical model by adding recent data sources to supplement the original database and including the following additional cases: (i) more than one GM maize source field adjacent to the conventional or organic field, (ii) the possibility of so-called “stacked” varieties with more than one GM trait, and (iii) lower pollen shed in the non-GM receptor field. These additional factors lead to the possibility for somewhat wider combinations of isolation distance and border rows than required in the original version of the empirical model. For instance, in the very conservative case of a 1-ha square non-GM maize field surrounded on all four sides by homozygous GM maize with 12 m isolation (the effective isolation distance for a single GM field), non-GM border rows of 12 m are required to be 95% confident of gene flow less than 0.9% in the non-GM field (with adventitious presence of 0.3%). Stacked traits of higher GM mass fraction and receptor fields of lower pollen shed would require a greater number of border rows to comply with the 0.9% threshold, and an updated extension to the model is provided to quantify these effects.
Resumo:
In this paper a modified algorithm is suggested for developing polynomial neural network (PNN) models. Optimal partial description (PD) modeling is introduced at each layer of the PNN expansion, a task accomplished using the orthogonal least squares (OLS) method. Based on the initial PD models determined by the polynomial order and the number of PD inputs, OLS selects the most significant regressor terms reducing the output error variance. The method produces PNN models exhibiting a high level of accuracy and superior generalization capabilities. Additionally, parsimonious models are obtained comprising a considerably smaller number of parameters compared to the ones generated by means of the conventional PNN algorithm. Three benchmark examples are elaborated, including modeling of the gas furnace process as well as the iris and wine classification problems. Extensive simulation results and comparison with other methods in the literature, demonstrate the effectiveness of the suggested modeling approach.
Resumo:
This review summarises the history of transgenic (GM) cereals, principally maize, and then focuses on the scientific literature published in the last two years. It describes the production of GM cereals with modified traits, divided into input traits and output traits. The first category includes herbicide tolerance and insect resistance, and resistance to abiotic and biotic stresses; the second includes altered grains for starch, protein or nutrient quality, the use of cereals for the production of high value medical or other products, and the generation of plants with improved efficiency of biofuel production. Using data from field trial and patent databases the review considers the diversity of GM lines being tested for possible future development. It also summarises the dichotomy of response to GM products in various countries, describes the basis for the varied public acceptability of such products, and assesses the development of novel breeding techniques in the light of current GM regulatory procedures.
Resumo:
Transcriptional dysfunction is a prominent hallmark of Huntington's disease (HD). Several transcription factors have been implicated in the aetiology of HD progression and one of the most prominent is repressor element 1 (RE1) silencing transcription factor (REST). REST is a global repressor of neuronal gene expression and in the presence of mutant Huntingtin increased nuclear REST levels lead to elevated RE1 occupancy and a concomitant increase in target gene repression, including brain-derived neurotrophic factor. It is of great interest to devise strategies to reverse transcriptional dysregulation caused by increased nuclear REST and determine the consequences in HD. Thus far, such strategies have involved RNAi or mutant REST constructs. Decoys are double-stranded oligodeoxynucleotides corresponding to the DNA-binding element of a transcription factor and act to sequester it, thereby abrogating its transcriptional activity. Here, we report the use of a novel decoy strategy to rescue REST target gene expression in a cellular model of HD. We show that delivery of the decoy in cells expressing mutant Huntingtin leads to its specific interaction with REST, a reduction in REST occupancy of RE1s and rescue of target gene expression, including Bdnf. These data point to an alternative strategy for rebalancing the transcriptional dysregulation in HD.
Resumo:
The ripening processes of 24 apple cultivars were examined in the United Kingdom National Fruit Collection in 2010. Basically the starch content, and additionally ground colour, water-soluble solids content and flesh firmness were studied during ripening. The degradation of the starch content was evaluated using a 0–10 scale. A starch degradation value of 50% was taken to be the optimum harvest date, with harvest beginning at a value of 40% and finishing at 60%. Depending on the cultivar, this represented a harvest window of 9 to 21 days. Later ripening cultivars matured more slowly, leading to a longer harvesting period, with the exception of cv. Feuillemorte. Pronounced differences were observed among the cultivars on the basis of the starch degradation pattern, allowing them to be divided into four groups. Separate charts were elaborated for each group that are recommended for use in practice.
Resumo:
In this paper we propose methods for computing Fresnel integrals based on truncated trapezium rule approximations to integrals on the real line, these trapezium rules modified to take into account poles of the integrand near the real axis. Our starting point is a method for computation of the error function of complex argument due to Matta and Reichel (J Math Phys 34:298–307, 1956) and Hunter and Regan (Math Comp 26:539–541, 1972). We construct approximations which we prove are exponentially convergent as a function of N , the number of quadrature points, obtaining explicit error bounds which show that accuracies of 10−15 uniformly on the real line are achieved with N=12 , this confirmed by computations. The approximations we obtain are attractive, additionally, in that they maintain small relative errors for small and large argument, are analytic on the real axis (echoing the analyticity of the Fresnel integrals), and are straightforward to implement.
Resumo:
Resistant starch (RS) has been shown to beneficially affect insulin sensitivity in healthy individuals and those with metabolic syndrome, but its effects on human type 2 diabetes (T2DM) are unknown. This study aimed to determine the effects of increased RS consumption on insulin sensitivity and glucose control and changes in postprandial metabolites and body fat in T2DM. Seventeen individuals with well-controlled T2DM (HbA1c 46.6±2 mmol/mol) consumed, in a random order, either 40 g of type 2 RS (HAM-RS2) or a placebo, daily for 12 weeks with a 12-week washout period in between. At the end of each intervention period, participants attended for three metabolic investigations: a two-step euglycemic–hyperinsulinemic clamp combined with an infusion of [6,6-2H2] glucose, a meal tolerance test (MTT) with arterio-venous sampling across the forearm, and whole-body imaging. HAM-RS2 resulted in significantly lower postprandial glucose concentrations (P=0.045) and a trend for greater glucose uptake across the forearm muscle (P=0.077); however, there was no effect of HAM-RS2 on hepatic or peripheral insulin sensitivity, or on HbA1c. Fasting non-esterified fatty acid (NEFA) concentrations were significantly lower (P=0.004) and NEFA suppression was greater during the clamp with HAM-RS2 (P=0.001). Fasting triglyceride (TG) concentrations and soleus intramuscular TG concentrations were significantly higher following the consumption of HAM-RS2 (P=0.039 and P=0.027 respectively). Although fasting GLP1 concentrations were significantly lower following HAM-RS2 consumption (P=0.049), postprandial GLP1 excursions during the MTT were significantly greater (P=0.009). HAM-RS2 did not improve tissue insulin sensitivity in well-controlled T2DM, but demonstrated beneficial effects on meal handling, possibly due to higher postprandial GLP1.
Resumo:
The environmental impacts of genetically modified crops is still a controversial issue in Europe. The overall risk assessment framework has recently been reinforced by the European Food Safety Authority(EFSA) and its implementation requires harmonized and efficient methodologies. The EU-funded research project AMIGA − Assessing and monitoring Impacts of Genetically modified plants on Agro-ecosystems − aims to address this issue, by providing a framework that establishes protection goals and baselines for European agro-ecosystems, improves knowledge on the potential long term environmental effects of genetically modified (GM) plants, tests the efficacy of the EFSA Guidance Document for the Environmental Risk Assessment, explores new strategies for post market monitoring, and provides a systematic analysis of economic aspects of Genetically Modified crops cultivation in the EU. Research focuses on ecological studies in different EU regions, the sustainability of GM crops is estimated by analysing the functional components of the agro-ecosystems and specific experimental protocols are being developed for this scope.
Resumo:
There is an on-going debate on the environmental effects of genetically modified crops to which this paper aims to contribute. First, data on environmental impacts of genetically modified (GM) and conventional crops are collected from peer-reviewed journals, and secondly an analysis is conducted in order to examine which crop type is less harmful for the environment. Published data on environmental impacts are measured using an array of indicators, and their analysis requires their normalisation and aggregation. Taking advantage of composite indicators literature, this paper builds composite indicators to measure the impact of GM and conventional crops in three dimensions: (1) non-target key species richness, (2) pesticide use, and (3) aggregated environmental impact. The comparison between the three composite indicators for both crop types allows us to establish not only a ranking to elucidate which crop is more convenient for the environment but the probability that one crop type outperforms the other from an environmental perspective. Results show that GM crops tend to cause lower environmental impacts than conventional crops for the analysed indicators.
Resumo:
Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400 MPa/60°C for 15 min, whereas it took nearly 8 h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3 h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.