110 resultados para lipoprotein


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. RESULTS: After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). CONCLUSIONS: Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: We have previously demonstrated that carrying the apolipoprotein (apo) E epsilon 4 (E4+) genotype disrupts omega-3 fatty acids (n − 3 PUFA) metabolism. Here we hypothesise that the postprandial clearance of n − 3 PUFA from the circulation is faster in E4+ compared to non-carriers (E4−). The objective of the study was to investigate the fasted and postprandial fatty acid (FA) profile of triacylglycerol-rich lipoprotein (TRL) fractions: Sf >400 (predominately chylomicron CM), Sf 60 − 400 (VLDL1), and Sf 20 − 60 (VLDL2) according to APOE genotype. Methods: Postprandial TRL fractions were obtained in 11 E4+ (ε3/ε4) and 12 E4− (ε3/ε3) male from the SATgenε study following high saturated fat diet + 3.45 g/d of docosahexaenoic acid (DHA) for 8-wk. Blood samples were taken at fasting and 5-h after consuming a test-meal representative of the dietary intervention. FA were characterized by gas chromatography. Results: At fasting, there was a 2-fold higher ratio of eicosapentaenoic acid (EPA) to arachidonic acid (P = 0.046) as well as a trend towards higher relative% of EPA (P=0.063) in theSf >400 fraction of E4+. Total n − 3 PUFA in the Sf 60 − 400 and Sf 20 − 60 fractions were not APOE genotype dependant. At 5 h, there was a trend towards a time × genotype interaction (P=0.081) for EPA in theSf >400 fraction. When sub-groups were form based on the level of EPA at baseline within the Sf >400 fraction, postprandial EPA (%) was significantly reduced only in the high-EPA group. EPA at baseline significantly predicted the postprandial response in EPA only in E4+ subjects (R2 = 0.816). Conclusion: Despite the DHA supplement contain very low levels of EPA, E4+ subjects with high EPA at fasting potentially have disrupted postprandial n − 3 PUFA metabolism after receiving a high-dose of DHA. Trial registration: Registered at clinicaltrials.gov/show/NCT01544855.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND:Apolioprotein E (APOE) genotype is reported to influence a person's fasting lipid profile and potentially the response to dietary fat manipulation. The impact of APOE genotype on the responsiveness to meals of varying fat composition is unknown. OBJECTIVE:We examined the effect of meals containing 50 g of fat rich in saturated fatty acids (SFAs), unsaturated fatty acids (UNSATs), or SFAs with fish oil (SFA-FO) on postprandial lipemia. METHOD:A randomized, controlled, test meal study was performed in men recruited according to the APOE genotype (n = 10 APOE3/3, n = 11 APOE3/E4). RESULTS:For the serum apoE response (meal × genotype interaction P = 0.038), concentrations were on average 8% lower after the UNSAT than the SFA-FO meal in APOE4 carriers (P = 0.015) only. In the genotype groups combined, there was a delay in the time to reach maximum triacylglycerol (TG) concentration (mean ± SEM: 313 ± 25 vs. 266 ± 27 min) and higher maximum nonesterified fatty acid (0.73 ± 0.05 vs. 0.60 ± 0.03 mmol/L) and glucose (7.92 ± 0.22 vs. 7.25 ± 0.22 mmol/L) concentrations after the SFA than the UNSAT meal, respectively (P ≤ 0.05). In the Svedberg flotation rate 60-400 TG-rich lipoprotein fraction, meal × genotype interactions were observed for incremental area under the curve (IAUC) for the TG (P = 0.038) and apoE (P = 0.016) responses with a 58% lower apoE IAUC after the UNSAT than the SFA meal (P = 0.017) in the E4 carriers. CONCLUSIONS:Our data indicate that APOE genotype had a modest impact on the postprandial response to meals of varying fat composition in normolipidemic men. The physiologic importance of greater apoE concentrations after the SFA-rich meals in APOE4 carriers may reflect an impact on TG-rich lipoprotein clearance from the circulation. This trial was registered at clinicaltrials.gov as NCT01522482.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers’ disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly “nanodisc” structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/ Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Public health strategies to lower cardiovascular disease (CVD) risk involve reducing dietary saturated fatty acid (SFA) intake to ≤10% of total energy (%TE). However, the optimal type of replacement fat is unclear. Objective: We investigated the substitution of 9.5-9.6%TE dietary SFA with either monounsaturated (MUFA) or n-6 polyunsaturated fatty acids (PUFA) on vascular function and other CVD risk factors. Design: Using a randomized, controlled, single-blind, parallel group dietary intervention, 195 men and women aged 21-60 y with moderate CVD risk (≥50% above the population mean) from the United Kingdom followed one of three 16-wk isoenergetic diets (%TE target compositions, total fat:SFA:MUFA:n-6 PUFA): SFA-rich (36:17:11:4, n = 65), MUFA-rich (36:9:19:4, n = 64) or n-6 PUFA-rich (36:9:13:10, n = 66). The primary outcome measure was flow-mediated dilatation (%FMD); secondary outcome measures included fasting serum lipids, microvascular reactivity, arterial stiffness, ambulatory blood pressure, and markers of insulin resistance, inflammation and endothelial activation. Results: Replacing SFA with MUFA or n-6 PUFA did not significantly impact on %FMD (primary endpoint) or other measures of vascular reactivity. Of the secondary outcome measures, substitution of SFA with MUFA attenuated the increase in night systolic blood pressure (-4.9 mm Hg, P = 0.019) and reduced E-selectin (-7.8%, P = 0.012). Replacement with MUFA or n-6 PUFA lowered fasting serum total cholesterol (TC; -8.4% and -9.2%, respectively), low-density lipoprotein cholesterol (-11.3% and -13.6%) and TC to high-density lipoprotein cholesterol ratio (-5.6% and -8.5%) (P ≤ 0.001). These changes in low-density lipoprotein cholesterol equate to an estimated 17-20% reduction in CVD mortality. Conclusions: Substitution of 9.5-9.6%TE dietary SFA with either MUFA or n-6 PUFA did not impact significantly on %FMD or other measures of vascular function. However, the beneficial effects on serum lipid biomarkers, blood pressure and E-selectin offer a potential public health strategy for CVD risk reduction.