287 resultados para increased precipitation
Resumo:
An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979–2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichón eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichón eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed.
Resumo:
Recent changes in climate have had a measurable impact on crop yield in China. The objective of this study is to investigate how climate variability affects wheat yield in China at different spatial scales. First the response of wheat yield to the climate at the provincial level from 1978 to 1995 for China was analysed. Wheat yield variability was only correlated with climate variability in some regions of China. At the provincial level, the variability of precipitation had a negative impact on wheat yield in parts of southeast China, but the seasonal mean temperature had a negative impact on wheat yield in only a few provinces, where significant variability in precipitation explained about 23–60% of yield variability, and temperature variability accounted for 37–41% of yield variability from 1978 to 1995. The correlation between wheat yield and climate for the whole of China from 1985 to 2000 was investigated at five spatial scales using climate data. The Climate Research Unit (CRU) and National Centers for Environmental Prediction (NCEP) proportions of the grid cells with a significant yield–precipitation correlation declined progressively from 14.6% at 0.5° to 0% at 5° scale. In contrast, the proportion of grid cells significant for the yield–temperature correlation increased progressively from 1.9% at 0.5° scale to 16% at 5° scale. This indicates that the variability of precipitation has a higher association with wheat yield at small scales (0.5°, 2°/2.5°) than at larger scales (4°/5.0°); but wheat yield has a good association with temperature at all levels of aggregation. The precipitation variable at the smaller scales (0.5°, 2°/2.5°) is a dominant factor in determining inter-annual wheat yield variability more so than at the larger scales (4°/5°). We conclude that in the current climate the relationship between wheat yield and each of precipitation and temperature becomes weaker and stronger, respectively, with an increase in spatial scale.
Resumo:
A greater understanding of the molecular basis of hibernating myocardium may assist in identifying those patients who would most benefit from revascularization. Paired heart biopsies were taken from hypocontractile and normally-contracting myocardium (identified by cardiovascular magnetic resonance) from 6 patients with chronic stable angina scheduled for bypass grafting. Gene expression profiles of hypocontractile and normally-contracting samples were compared using Affymetrix microarrays. The data for patients with confirmed hibernating myocardium were analysed separately and a different, though overlapping, set (up to 380) of genes was identified which may constitute a molecular fingerprint for hibernating myocardium. The expression of B-type natriuretic peptide (BNP) was increased in hypocontractile relative to normally-contracting myocardium. The expression of BNP correlated most closely with the expression of proenkephalin and follistatin 3, which may constitute additional heart failure markers. Our data illustrate differential gene expression in hypocontractile and/hibernating myocardium relative to normally-contracting myocardium within individual human hearts. Changes in expression of these genes, including increased relative expression of natriuretic and other factors, may constitute a molecular signature for hypocontractile and/or hibernating myocardium.
Resumo:
Through increases in net primary production (NPP), elevated CO2 is hypothesizes to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE) experiment near Bangor, Wales, 4 ambient CO2 and 4 FACE plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. Four years after establishment, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by FACE. We observed a decrease of leaf N content in Betula and Alnus under FACE, while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by FACE. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated CO2 at this site.
Resumo:
The major component of skeletal muscle is the myofibre. Genetic intervention inducing over-enlargement of myofibres beyond a certain threshold through acellular growth causes a reduction in the specific tension generating capacity of the muscle. However the physiological parameters of a genetic model that harbours reduced skeletal muscle mass have yet to be analysed. Genetic deletion of Meox2 in mice leads to reduced limb muscle size and causes some patterning defects. The loss of Meox2 is not embryonically lethal and a small percentage of animals survive to adulthood making it an excellent model with which to investigate how skeletal muscle responds to reductions in mass. In this study we have performed a detailed analysis of both late foetal and adult muscle development in the absence of Meox2. In the adult, we show that the loss of Meox2 results in smaller limb muscles that harbour reduced numbers of myofibres. However, these fibres are enlarged. These myofibres display a molecular and metabolic fibre type switch towards a more oxidative phenotype that is induced through abnormalities in foetal fibre formation. In spite of these changes, the muscle from Meox2 mutant mice is able to generate increased levels of specific tension compared to that of the wild type.
Resumo:
LaMn and LaCo doped barium hexaferrites of formula Ba(1-x)LaxFe(12-x)MxO19 (M=Mn, Co) (x=0.05 to 0.40) were prepared with an improved co-precipitation/molten salt method. For the synthesis, aqueous solutions of the appropriate metal chlorides were prepared in the ratio required except that the initial mole ratio of Fe and dopants to Ba was chosen to be 11:1, and then mixed with excess Na2CO3. The solutions were then cooled, filtered off, dried, then mixed with KCl flux, and heated at 450 degrees C and for 2 h. The temperature was then raised to 950 degrees C and kept for 4 h, then cooled. This new synthesis method, which employs a lower temperature and shorter reaction time, gives products with improved crystallinity and purity while the saturation magnetization and coercivity values are comparable with those synthesized via the high temperature method.
Resumo:
Objective: To examine the effects of the consumption of fish oils on the gene expression of lipoprotein lipase (LPL, EC 3.1.1.34) in human adipose tissue. In order to measure LPL mRNA in adipose tissue samples obtained by needle biopsy from human volunteers a competitive, reverse transcriptase PCR (RT-PCR) protocol was developed. Design: A randomised controlled, single blind cross over dietary study which compared the effects of a low level n-3 polyunsaturated fatty acids (PUFA) using normal foods enriched with eicosapentaenoic (EPA) and docosahexaenoic (DHA) (test diet), with non-enriched but otherwise identical foods (control). The diets were consumed for a period of 22 d with a wash out period of 5 months between the diets. Setting: Free-living individuals associated with the University of Surrey. Subjects: Six male subjects with a mean (±sd) age of 51.2±3.6 y were recruited. Major Outcome Measures: Pre-and postprandial blood samples were taken for the measurement of triacylglycerol (TAG), postheparin LPL activity and adipose tissue samples for the measurement of LPL mRNA levels. Results: Mean LPL expression values were 4.12´105 molecules of LPL mRNA per ng total RNA on the control diet and 4.60´105 molecules of LPL mRNA per ng total RNA on the n-3 PUFA enriched (test) diet. There was no significant difference between the levels of LPL expression following each diet, consistent with the lack of change in TAG levels in response to increased dietary n-3 PUFA intake. However, the change in LPL expression (Test-Control diet) correlated significantly with the change in fasting TAG levels (P=0.03, R=-0.87 and R2=0.75) and with the total area under the TAG-time response curve (P=0.003, R=-0.96 and R2=0.92) in individuals. Conclusions: These findings, although based on a small number of subjects, suggest that LPL expression may be a determinant of plasma TAG levels. The development of this methodology should allow further elucidation of the effects of dietary manipulation and disease processes on lipid clearance and regulation in human subjects.
Resumo:
A method has been developed which enables the easy and inexpensive preparation of gram quantities of (–)-epigallocatechin gallate from green tea (Camellia sinensis). A decaffeinated aqueous brew of commercial green tea is treated with caffeine (30 m ). The precipitate is redissolved after decaffeination with chloroform and further purified by solvent partition with ethyl hexanoate and propyl acetate. Commercial leaf (25 g) yields 400 mg (–)-epigallocatechin gallate at better than 80% purity, as judged by reversed phase HPLC.
Resumo:
In situ precipitation measurements can extremely differ in space and time. Taking into account the limited spatial–temporal representativity and the uncertainty of a single station is important for validating mesoscale numerical model results as well as for interpreting remote sensing data. In situ precipitation data from a high resolution network in North-Eastern Germany are analysed to determine their temporal and spatial representativity. For the dry year 2003 precipitation amounts were available with 10 min resolution from 14 rain gauges distributed in an area of 25 km 25 km around the Meteorological Observatory Lindenberg (Richard-Aßmann Observatory). Our analysis reveals that short-term (up to 6 h) precipitation events dominate (94% of all events) and that the distribution is skewed with a high frequency of very low precipitation amounts. Long-lasting precipitation events are rare (6% of all precipitation events), but account for nearly 50% of the annual precipitation. The spatial representativity of a single-site measurement increases slightly for longer measurement intervals and the variability decreases. Hourly precipitation amounts are representative for an area of 11 km 11 km. Daily precipitation amounts appear to be reliable with an uncertainty factor of 3.3 for an area of 25 km 25 km, and weekly and monthly precipitation amounts have uncertainties of a factor of 2 and 1.4 when compared to 25 km 25 km mean values.
Resumo:
Climate controls upland habitats, soils and their associated ecosystem services; therefore, understanding possible changes in upland climatic conditions can provide a rapid assessment of climatic vulnerability over the next century. We used 3 different climatic indices that were optimised to fit the upland area classified by the EU as a Severely Disadvantaged Area (SDA) 1961–1990. Upland areas within the SDA covered all altitudinal ranges, whereas the maximum altitude of lowland areas outside of the SDA was ca. 300 m. In general, the climatic index based on the ratio between annual accumulated temperature (as a measure of growing season length) and annual precipitation predicted 96% of the SDA mapped area, which was slightly better than those indices based on annual or seasonal water deficit. Overall, all climatic indices showed that upland environments were exposed to some degree of change by 2071–2100 under UKCIP02 climate projections for high and low emissions scenarios. The projected area declined by 13 to 51% across 3 indices for the low emissions scenario and by 24 to 84% for the high emissions scenario. Mean altitude of the upland area increased by +11 to +86 m for the low scenario and +21 to +178 m for the high scenario. Low altitude areas in eastern and southern Great Britain were most vulnerable to change. These projected climatic changes are likely to affect upland habitat composition, long-term soil carbon storage and wider ecosystem service provision, although it is not yet possible to determine the rate at which this might occur.
Resumo:
The problems encountered by individuals with disabilities when accessing large public buildings is described and a solution based on the generation of virtual models of the built environment is proposed. These models are superimposed on a control network infrastructure, currently utilised in intelligent building applications such as lighting, heating and access control. The use of control network architectures facilitates the creation of distributed models that closely mirror both the physical and control properties of the environment. The model of the environment is kept local to the installation which allows the virtual representation of a large building to be decomposed into an interconnecting series of smaller models. This paper describes two methods of interacting with the virtual model, firstly a two dimensional aural representation that can be used as the basis of a portable navigational device. Secondly an augmented reality called DAMOCLES that overlays additional information on a user’s normal field of view. The provision of virtual environments offers new possibilities in the man-machine interface so that intuitive access to network based services and control functions can be given to a user.