138 resultados para fatty-acid composition
Resumo:
SCOPE: A high intake of n-3 PUFA provides health benefits via changes in the n-6/n-3 ratio in blood. In addition to such dietary PUFAs, variants in the fatty acid desaturase 1 (FADS1) gene are also associated with altered PUFA profiles. METHODS AND RESULTS: We used mathematical modelling to predict levels of PUFA in whole blood, based on MHT and bolasso selected food items, anthropometric and lifestyle factors, and the rs174546 genotypes in FADS1 from 1,607 participants (Food4Me Study). The models were developed using data from the first reported time point (training set) and their predictive power was evaluated using data from the last reported time point (test set). Amongst other food items, fish, pizza, chicken and cereals were identified as being associated with the PUFA profiles. Using these food items and the rs174546 genotypes as predictors, models explained 26% to 43% of the variability in PUFA concentrations in the training set and 22% to 33% in the test set. CONCLUSIONS: Selecting food items using MHT is a valuable contribution to determine predictors, as our models' predictive power is higher compared to analogue studies. As unique feature, we additionally confirmed our models' power based on a test set.
Resumo:
Foods derived from animals are an important source of nutrients in the diet; for example, milk and meat together provide about 60 and 55% of the dietary intake of Ca and protein respectively in the UK. However, certain aspects of some animal-derived foods, particularly their fat and saturated fatty acid (SFA) contents, have led to concerns that these foods substantially contribute to the risk of CVD, the metabolic syndrome and other chronic diseases. In most parts of Europe dairy products are the greatest single dietary source of SFA. The fatty acid composition of various animal-derived foods is, however, not constant and can, in many cases, be enhanced by animal nutrition. In particular, milk fat with reduced concentrations of the C12-16 SFA and an increased concentration of 18:1 MUFA is achievable, although enrichment with very-long-chain n-3 PUFA is much less efficient. However, there is now evidence that some animal-derived foods (notably milk products) contain compounds that may actively promote long-term health, and research is urgently required to fully characterise the benefits associated with the consumption of these compounds and to understand how the levels in natural foods can be enhanced. It is also vital that the beneficial effects are not inadvertently destroyed in the process of reducing the concentrations of SFA. In the future the role of animal nutrition in creating foods closer to the optimum composition for long-term human health is likely to become increasingly important, but production of such foods on a scale that will substantially affect national diets will require political and financial incentives and great changes in the animal production industry.
Resumo:
During studies on the bacteriology of appendicitis in children, we often isolated from inflamed and non-inflamed tissue samples, an unusual bile-resistant pigment-producing strictly anaerobic gram-negative rod. Phenotypically this organism resembles members of Bacteroides fragilis group of species, as it is resistant to bile and exhibits a special-potency-disk pattern (resistance to vancomycin, kanamycin and colistin) typical for the B. fragilis group. However, the production of brown pigment on media containing haemolysed blood and a cellular fatty acid composition dominated by iso-C15:0, suggests that the organism most closely resembles species of the genus Porphyromonas. However, the unidentified organism differs from porphyromonads by being bile-resistant and by not producing butyrate as a metabolic end-product. Comparative 16S ribosomal RNA gene sequencing studies show the unidentified organism represents a distinct sub-line, associated with but distinct from, the miss-classified species Bacteroides putredinis. The clustering of the unidentified bacterium with Bacteroides putredinis was statistically significant, but they displayed >4% sequence divergence with each other. Chromosomal DNA-DNA pairing studies further confirmed the separateness of the unidentified bacterium and Bacteroides putredinis. Based on phenotypic and phylogenetic considerations, it is proposed that Bacteroides putredinis and the unidentified bacterium from human sources be classified in a new genus Alistipes, as Alistipes putredinis comb. nov. and Alistipes finegoldii sp. nov., respectively. The type strain of Alistipes finegoldii is CCUG 46020(T) (= AHN2437(T)).
Resumo:
Background & aims: This study investigated the influence of four commercial lipid emulsions, Ivelip, ClinOleic, Omegaven and SMOFlipid (R), on lipid body formation, fatty acid composition and eicosanoid production by cultured human peripheral blood polymorphonuclear cells (PMN) and mononuclear cells (PBMC). Methods: PMN and PBMC were exposed to emulsions at concentrations ranging from 0.01 to 0.04%. Lipid body formation was assessed by microscopy, fatty acid composition by gas chromatography and eicosanoids by ELISA. Results: Stimulation of inflammatory cells and exposure to lipid emulsions promoted the formation of lipid bodies, but there did not appear to be differential effects of the emulsions tested. In contrast, there were differential effects of lipid emulsions on eicosanoid formation, particularly with regards to LTB4 production by PMN. Omegaven dramatically increased production of eicosanoids compared with the other emulsions in a dose-dependent manner. This effect was associated with a significantly higher level of lipid peroxides in the supernatants of cells exposed to Omegaven. Conclusions: Stimulation of inflammatory cells and exposure to lipid emulsions promotes lipid body formation and eicosanoid production, although the differential effects of different emulsions appear to be largely due to lipid peroxidation of unsaturated fatty acids in some emulsions in this in vitro system. (C) 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Background: Indian Asians living in Western Countries have an over 50% increased risk of coronary heart disease (CHD) relative to their Caucasians counterparts. The atherogenic lipoprotein phenotype (ALP), which is more prevalent in this ethnic group, may in part explain the increased risk. A low dietary long chain n-3 fatty acid (LC n-3 PUFA) intake and a high dietary n-6 PUFA intake and n-6:n-3 PUFA ratio in Indian Asians have been proposed as contributors to the increased ALP incidence and CHD risk in this subgroup. Aim: To examine the impact of dietary n-6:n-3 PUFA ratio on membrane fatty acid composition, blood lipid levels and markers of insulin sensitivity in Indian Asians living in the UK. Methods: Twenty-nine males were assigned to either a moderate or high n-6:n-3 PUFA (9 or 16) diet for 6 weeks. Fasting blood samples were collected at baseline and 6 weeks for analysis of triglycerides, total-, LDL- and HDL- cholesterol, non-esterified fatty acids, glucose, insulin, markers of insulin sensitivity and C-reactive protein. Results: Group mean saturated fatty acid, MUFA, n-6 PUFA and n-3 PUFA on the moderate and high n-6:n-3 PUFA diets were 26 g/d, 43 g/d, 15 g/d, 2 g/d and 25 g/d, 25 g/d, 28 g/d, 2 g/d respectively. A significantly lower total membrane n-3 PUFA and a trend towards lower EPA and DHA levels were observed following the high n-6:n-3 PUFA diet. However no significant effect of treatment on plasma lipids was evident. There was a trend towards a loss of insulin sensitivity on the high n-6:n-3 PUFA diet, with the increase in fasting insulin (P = 0.04) and HOMA IR [(insulin x glucose)/22.5] (P = 0.02) reaching significance. Conclusion: The results of the current study suggest that, within the context of a western diet, it is unlikely that dietary n-6:n-3 PUFA ratio has any major impact on the levels of LC n-3 PUFA in membrane phospholipids or have any major clinically relevant impact on insulin sensitivity and its associated dyslipidaemia.
Resumo:
Campylobacter jejuni NCTC 11168 does not exhibit the general increase in cellular stress resistance on entry into stationary phase that is seen in most other bacteria. This is consistent with the lack of global stationary phase regulatory elements in this organism. deduced from an analysis of its genome sequence. We now show that C. jejuni NCTC 11168 does undergo certain changes in stationary phase, of a pattern not previously described. As cells entered stationary phase there was a change in membrane fatty acid composition, principally a decrease in the proportion of unsaturated fatty acids and an increase in the content of cyclopropane and short-chain fatty acids. These changes in membrane composition were accompanied by an increase in the resilience of the cell membrane towards loss of integrity caused by pressure and an increase in cellular pressure resistance. By contrast. there were no major changes in resistance to acid or heat treatment. A similar pattern of changes in stress resistance on entry, into stationary phase was seen in C. jejuni NCTC 11351, the type strain. These changes appear to represent a restricted Physiological response to the conditions existing in stationary phase cultures, in an organism having limited capacity for genetic regulation and adaptation to environment. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The aroma volatiles of walnuts from three different geographical locations were studied. Over 110 compounds were identified in the headspace volatiles, many for the first time as walnut components. Walnuts from China and the Ukraine contained high levels of lipid-derived volatiles, in particular hexanal, pentanal, 1-hexanol and 1-pentanol from linoleic acid breakdown, and 1-penten-3-ol from alpha-linolenic acid breakdown. Chilean walnuts, however, contained high levels of alkylbenzenes of molecular weight 120, with the lipid-derived aldehydes and alcohols present at much lower levels than in the other two walnut samples. The relationship between the fatty acid composition of the walnuts and their volatile composition is discussed. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
Postprandial lipaemic responses to two test meals were investigated in 30 Northern (15 British and 15 Irish), and 30 Southern (Greeks from Crete) healthy male Europeans. The meals were a saturated fatty acid (SFA) meal, which resembled the fatty acid composition of an average UK diet, and a monounsaturated fatty acid (MUFA) meal in which the fat consisted of olive oil. Habitual diets of the two groups differed, with higher total fat, (P < 0.03) and MUFA (P < 0.0001) and lower polyunsaturated fatty acid (PUFA) (P < 0.0001) intakes in Southern than Northern Europeans. Levels of total MUFA (P < 0.02) and oleic acid (P < 0.004) were also higher in adipose tissue of Southern in comparison to Northern Europeans. In both European groups there were no significant differences in postprandial triglyceride response between the two meal types, SFA or MUFA. However, Northern and Southern Europeans showed significant differences in their patterns of postprandial response in plasma triglycerides (P < 0.0001), apolipoprotein B-48 (P < 0.0001), NEFA (P < 0.0001), insulin (P < 0.0007), and factor VII activity (P-0.03). In the case of NEFA, areas under the response curve were higher following the SFA than the MUFA meal for both groups, (P < 0.003) and were greater in Southern than Northern Europeans (P < 0.002) and apo B-48 responses were lower (P < 0.005). Some of these differences may reflect differences in fasting levels since fasting apolipoprotein B-48 levels were lower (P < 0.01) and fasting NEFA (P < 0.02) and insulin (P < 0.005) were higher in the Southern than in the Northern Europeans. In addition, 9 h postprandial post-heparin lipoprotein lipase activity was lower in the Southern than in the Northern Europeans (P < 0.0006). This is the first report of differences in postprandial lipid, factor VII and insulin responses in Southern and Northern Europeans which may be of importance in explaining the different susceptibilities of these two populations to risk of coronary artery disease.
Resumo:
Interest in effects of diet on postprandial lipoproteins has increased in recent years as a result of accumulating evidence for adverse cardiovascular consequences of elevated concentrations of triglyceride rich lipoproteins. Particular attention has been given to ability of different fatty acids to modulate postprandial lipoprotein responses because of evidence for both harmful and protective cardiovascular properties of the saturated, monounsaturated and ω-6 and ω-3 polyunsaturated fatty acid (PUFA) classes. Evidence for direct atherogenic properties of chylomicron remnants has led to attempts to monitor effects of diet specifically on this lipoprotein class. Limitations in the methods employed to measure chylomicron remnants and the small number of human studies which have evaluated effects of meal, and background diet, fatty acid composition, makes it difficult to draw definitive conclusions at the present time. However consideration of data from both animal and human studies tends to support the conclusion that diets, and meals, rich in PUFA (particularly long chain ω-3 PUFA), result in attenuated postprandial responses of the intestinally-derived lipoproteins. Attenuated responses to high PUFA meals appear to be due to greater rates of clearance and greater activation of lipoprotein lipase (LPL). Attenuated responses to high PUFA background diets may be due to adaptive changes involving both accelerated rates of clearance in peripheral tissues and liver, as well as decreased output of the competitor for chylomicron clearance, very low density lipoprotein (VLDL).
Resumo:
Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.