144 resultados para berry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Terahertz (THz) frequency radiation, 0.1 THz to 20 THz, is being investigated for biomedical imaging applications following the introduction of pulsed THz sources that produce picosecond pulses and function at room temperature. Owing to the broadband nature of the radiation, spectral and temporal information is available from radiation that has interacted with a sample; this information is exploited in the development of biomedical imaging tools and sensors. In this work, models to aid interpretation of broadband THz spectra were developed and evaluated. THz radiation lies on the boundary between regions best considered using a deterministic electromagnetic approach and those better analysed using a stochastic approach incorporating quantum mechanical effects, so two computational models to simulate the propagation of THz radiation in an absorbing medium were compared. The first was a thin film analysis and the second a stochastic Monte Carlo model. The Cole–Cole model was used to predict the variation with frequency of the physical properties of the sample and scattering was neglected. The two models were compared with measurements from a highly absorbing water-based phantom. The Monte Carlo model gave a prediction closer to experiment over 0.1 to 3 THz. Knowledge of the frequency-dependent physical properties, including the scattering characteristics, of the absorbing media is necessary. The thin film model is computationally simple to implement but is restricted by the geometry of the sample it can describe. The Monte Carlo framework, despite being initially more complex, provides greater flexibility to investigate more complicated sample geometries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modelling the interaction of terahertz(THz) radiation with biological tissueposes many interesting problems. THzradiation is neither obviously described byan electric field distribution or anensemble of photons and biological tissueis an inhomogeneous medium with anelectronic permittivity that is bothspatially and frequency dependent making ita complex system to model.A three-layer system of parallel-sidedslabs has been used as the system throughwhich the passage of THz radiation has beensimulated. Two modelling approaches havebeen developed a thin film matrix model anda Monte Carlo model. The source data foreach of these methods, taken at the sametime as the data recorded to experimentallyverify them, was a THz spectrum that hadpassed though air only.Experimental verification of these twomodels was carried out using athree-layered in vitro phantom. Simulatedtransmission spectrum data was compared toexperimental transmission spectrum datafirst to determine and then to compare theaccuracy of the two methods. Goodagreement was found, with typical resultshaving a correlation coefficient of 0.90for the thin film matrix model and 0.78 forthe Monte Carlo model over the full THzspectrum. Further work is underway toimprove the models above 1 THz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Techniques for the coherent generation and detection of electromagnetic radiation in the far infrared, or terahertz, region of the electromagnetic spectrum have recently developed rapidly and may soon be applied for in vivo medical imaging. Both continuous wave and pulsed imaging systems are under development, with terahertz pulsed imaging being the more common method. Typically a pump and probe technique is used, with picosecond pulses of terahertz radiation generated from femtosecond infrared laser pulses, using an antenna or nonlinear crystal. After interaction with the subject either by transmission or reflection, coherent detection is achieved when the terahertz beam is combined with the probe laser beam. Raster scanning of the subject leads to an image data set comprising a time series representing the pulse at each pixel. A set of parametric images may be calculated, mapping the values of various parameters calculated from the shape of the pulses. A safety analysis has been performed, based on current guidelines for skin exposure to radiation of wavelengths 2.6 µm–20 mm (15 GHz–115 THz), to determine the maximum permissible exposure (MPE) for such a terahertz imaging system. The international guidelines for this range of wavelengths are drawn from two U.S. standards documents. The method for this analysis was taken from the American National Standard for the Safe Use of Lasers (ANSI Z136.1), and to ensure a conservative analysis, parameters were drawn from both this standard and from the IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields (C95.1). The calculated maximum permissible average beam power was 3 mW, indicating that typical terahertz imaging systems are safe according to the current guidelines. Further developments may however result in systems that will exceed the calculated limit. Furthermore, the published MPEs for pulsed exposures are based on measurements at shorter wavelengths and with pulses of longer duration than those used in terahertz pulsed imaging systems, so the results should be treated with caution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods have recently been developed that make use of electromagnetic radiation at terahertz (THz) frequencies, the region of the spectrum between millimetre wavelengths and the infrared, for imaging purposes. Radiation at these wavelengths is non-ionizing and subject to far less Rayleigh scatter than visible or infrared wavelengths, making it suitable for medical applications. This paper introduces THz pulsed imaging and discusses its potential for in vivo medical applications in comparison with existing modalities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Income segregation across Melbourne’s residential communities is widening, and at a pace faster than in some other Australian cities. The widening gap between Melbourne’s rich and poor communities raises fears about concentrations of poverty and social exclusion, particularly if the geography of these communities is such that they and their residents are increasingly isolated from urban services and employment centres. Social exclusion in our metropolitan areas and the government responses to it are commonly thought to be the proper domain of social and economic policy. The role of urban planning is typically neglected, yet it helps shape the economic opportunities available to communities in its attempts to influence the geographical location of urban services, infrastructure and jobs. Under the current metropolitan strategy ‘Melbourne 2030’ urban services and transport infrastructure are to be concentrated within Principal Activity Centres spread throughout the metropolitan area and it is the intention that lower-income households should have ready access to these activity centres. However, the Victorian state government has few housing policy instruments to achieve this goal and there are fears that community mix may suffer as house prices and rents are bid up in the vicinity of Principal Activity Centres, and lower-income households are displaced. But are these fears justified by the changing geography of house prices in the metropolitan region? This is the key research question addressed in this paper which examines whether the Victorian practice of placing reliance on the market to deliver affordable housing, while intervening to promote a more compact pattern of urban settlement, is effective.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scientists hold a wide range of beliefs on matters of religion, although popular media coverage in the UK commonly suggests that atheism is a core commitment for scientists. Considering the relationship between religion and science is a recommended topic in the English National Curriculum for lower secondary pupils (11-14 year-olds), and it is expected that different perspectives will be considered. However it is well established that many pupils may have difficulty accessing sophisticated ideas about the nature of science, and previous research suggests some may identify science with scientism. To explore pupil impressions of the relationship between science and religion, 13-14 year old pupils were surveyed in one class from each of four English secondary schools, by asking them to rate a set of statements about the relationship between science and religion, and scientific and religious perspectives on the origins of the world, and of life on earth, on the value of prayer and on the status of miracles. The survey revealed diverse views on these issues, reflecting the wider society. However it was found that a considerable proportion of the pupils in the sample considered religious beliefs and scientific perspectives to be opposed. The basis and potential consequences of such views are considered, and the need for more attention to this area of student thinking is highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthocyanins are flavonoid pigments imparting red, blue, or purple pigmentation to fruits, flowers and foliage. These compounds are powerful antioxidants in vitro, and are widely believed to contribute to human health. The fruit of the domestic apple (Malus x domestica) is a popular and important source of nutrients, and is considered one of the top ‘functional foods’—those foods that have inherent health-promoting benefits beyond basic nutritional value. The pigmentation of typical red apple fruits results from accumulation of anthocyanin in the skin. However, numerous genotypes of Malus are known that synthesize anthocyanin in additional fruit tissues including the core and cortex (flesh). Red-fleshed apple genotypes are an attractive starting point for development of novel varieties for consumption and nutraceutical use through traditional breeding and biotechnology. However, cultivar development is limited by lack of characterization of the diversity of genetic backgrounds showing this trait. We identified and cataloged red-fleshed apple genotypes from four Malus diversity collections representing over 3,000 accessions including domestic cultivars, wild species, and named hybrids. We found a striking range of flesh color intensity and pattern among accessions, including those carrying the MYB10 R 6 allele conferring ectopic expression of a key transcriptional regulator of anthocyanin biosynthesis. Although MYB10 R 6 was strongly associated with red-fleshed fruit among genotypes, this allele was neither sufficient nor required for this trait in all genotypes. Nearly all red-fleshed accessions tested could be traced back to ‘Niedzwetzkyana’, a presumed natural form of M. sieversii native to central Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'organisation des manuscrits arthuriens du cycle du Graal de Jacques d'Armagnac (BNF fr. 117-120 qu'il a hérité de son arrière-grand-père le duc Jean de Berry et dont il a fait retoucher les peintures et BNF fr. 113-116 qu'il a fait exécuter entre 1470 et 1475), leur agencement, leur illustration et leurs subdivisions sont un indice précieux de la conception et de la réception de ces compilations. Ils soulignent l'effort de constitution d'un ensemble romanesque cohérent centré sur la figure de Lancelot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of previous studies have shown that there is a widespread view among young people that science and religion are opposed. In this paper, we suggest that it requires a significant level of what can be termed ‘epistemic insight’ to access the idea that some people see science and religion as compatible while others do not. To explore this further, we draw on previous work to devise a methodology to discover students’ thinking about apparent contradictions between scientific and religious explanations of the origins of the universe. In our discussion of the findings, we highlight that students’ epistemic insight in this context does seem in many cases to be limited and we outline some of the issues emerging from the study that seem to boost or limit students’ progress in this area.