195 resultados para atlantic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daily weather patterns over the North Atlantic are classified into relevant types: typical weather patterns that may characterize the range of climate impacts from aviation in this region, for both summer and winter. The motivation is to provide a set of weather types to facilitate an investigation of climate-optimal aircraft routing of trans-Atlantic flights (minimizing the climate impact on a flight-by-flight basis). Using the New York to London route as an example, the time-optimal route times are shown to vary by over 60 min, to take advantage of strong tailwinds or avoid headwinds, and for eastbound routes latitude correlates well with the latitude of the jet stream. The weather patterns are classified by their similarity to the North Atlantic Oscillation and East Atlantic teleconnection patterns. For winter, five types are defined; in summer, when there is less variation in jet latitude, only three types are defined. The types can be characterized by the jet strength and position, and therefore the location of the time-optimal routes varies by type. Simple proxies for the climate impact of carbon dioxide, ozone, water vapour and contrails are defined, which depend on parameters such as the route time, latitude and season, the time spent flying in the stratosphere, and the distance over which the air is supersaturated with respect to ice. These proxies are then shown to vary between weather types and between eastbound and westbound routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of North Atlantic SST patterns on the storm track is investigated using a hierarchy of GCM simulations using idealized (aquaplanet) and “semirealistic” boundary conditions in the atmospheric component (HadAM3) of the third climate configuration of the Met Office Unified Model (HadCM3). This framework enables the mechanisms determining the tropospheric response to North Atlantic SST patterns to be examined, both in isolation and in combination with continental-scale landmasses and orography. In isolation, a “Gulf Stream” SST pattern acts to strengthen the downstream storm track while a “North Atlantic Drift” SST pattern weakens it. These changes are consistent with changes in the extratropical SST gradient and near-surface baroclinicity, and each storm-track response is associated with a consistent change in the tropospheric jet structure. Locally enhanced near-surface horizontal wind convergence is found over the warm side of strengthened SST gradients associated with ascending air and increased precipitation, consistent with previous studies. When the combined SST pattern is introduced into the semirealistic framework (including the “North American” continent and the “Rocky Mountains”), the results suggest that the topographically generated southwest–northeast tilt in the North Atlantic storm track is enhanced. In particular, the Gulf Stream shifts the storm track south in the western Atlantic whereas the strong high-latitude SST gradient in the northeastern Atlantic enhances the storm track there.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The meridional overturning circulation (MOC) is part of a global ocean circulation that redistributes heat from Equatorial to Polar regions. In the Atlantic the MOC carries heat northward (the Atlantic Heat Conveyor) which is released to the atmosphere and maintains UK temperatures between 3 to 5°C higher than elsewhere at similar latitudes. However, the present strength and structure of the MOC may not continue. The 2007 IPCC assessment report (IPCC, 2007) suggests that there is less than 10% chance of abrupt changes during the 21st Century, but that there is greater than 90% chance that MOC will slow by an average of 25% compared to pre-industrial levels, offsetting some of the warming over the European sector of the North Atlantic, and contributing to the rate of sea-level-rise. Daily observations using the RAPID MOC mooring array at 26.5°N are providing a continuous and growing time-series of the MOC strength and structure, but the five year record is at present too short to establish trends in the annual mean MOC. Other observations do not at present provide a coherent Atlantic wide picture of MOC variability, and there is little evidence of any long-term slowing. Ocean assimilation models suggest a slowing over the past decade of around 10%. However, models still have many problems in representing ocean circulation and conclusions of change are very uncertain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a global Ocean-Atmosphere General Circulation Model (OAGCM) to show that the major mountain ranges of the world have a significant role in maintenance of the Atlantic Meridional Overturning Circulation (AMOC). A simulation with mountains has a maximum AMOC of 18 Sv (1 Sv=106 m3 s-1) compared with ~0 Sv for a simulation without mountains. Atlantic heat transport at 25N is 1.1 PW with mountains compared to 0.2 PW without. The difference in AMOC is due to major changes in surface heat and freshwater (FW) fluxes over the Atlantic. In the Pacific changed surface fluxes lead to a meridional overturning circulation of 10 Sv. Our results suggest that the effects of mountains on the large-scale atmospheric circulation is to force the ocean towards a state with a vigorous AMOC and with no overturning in the Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in the Atlantic Meridional Overturning Circulation (MOC) exert an important influence on climate, particularly on decadal time scales. Simulation of the MOC in coupled climate models is compromised, to a degree that is unknown, by their lack of fidelity in resolving some of the key processes involved. There is an overarching need to increase the resolution and fidelity of climate models, but also to assess how increases in resolution influence the simulation of key phenomena such as the MOC. In this study we investigate the impact of significantly increasing the (ocean and atmosphere) resolution of a coupled climate model on the simulation of MOC variability by comparing high and low resolution versions of the same model. In both versions, decadal variability of the MOC is closely linked to density anomalies that propagate from the Labrador Sea southward along the deep western boundary. We demonstrate that the MOC adjustment proceeds more rapidly in the higher resolution model due the increased speed of western boundary waves. However, the response of the Atlantic Sea Surface Temperatures (SSTs) to MOC variations is relatively robust - in pattern if not in magnitude - across the two resolutions. The MOC also excites a coupled ocean-atmosphere response in the tropical Atlantic in both model versions. In the higher resolution model, but not the lower resolution model, there is evidence of a significant response in the extratropical atmosphere over the North Atlantic 6 years after a maximum in the MOC. In both models there is evidence of a weak negative feedback on deep density anomalies in the Labrador Sea, and hence on the MOC (with a time scale of approximately ten years). Our results highlight the need for further work to understand the decadal variability of the MOC and its simulation in climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes recent variations of the North Atlantic eddy-driven jet stream and analyzes the mean response of the jet to anthropogenic forcing in climate models. Jet stream changes are analyzed both using a direct measure of the near-surface westerly wind maximum and using an EOF-based approach. This allows jet stream changes to be related to the widely used leading patterns of variability: the North Atlantic Oscillation (NAO) and East Atlantic (EA) pattern. Viewed in NAO–EA state space, isolines of jet latitude and speed resemble a distorted polar coordinate system, highlighting the dependence of the jet stream quantities on both spatial patterns. Some differences in the results of the two methods are discussed, but both approaches agree on the general characteristics of the climate models. While there is some agreement between models on a poleward shift of the jet stream in response to anthropogenic forcing, there is still considerable spread between different model projections, especially in winter. Furthermore, the model responses to forcing are often weaker than their biases when compared to a reanalysis. Diagnoses of jet stream changes can be sensitive to the methodologies used, and several aspects of this are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current state-of-the-art climate models fail to capture accurately the path of the Gulf Stream and North Atlantic Current. This leads to a warm bias near the North American coast, where the modelled Gulf Stream separates from the coast further north, and a cold anomaly to the east of the Grand Banks of Newfoundland, where the North Atlantic Current remains too zonal in this region. Using an atmosphere-only model forced with the sea surface temperature (SST) biases in the North Atlantic, we consider the impact they have on the mean state and the variability in the North Atlantic European region in winter. Our results show that the SST errors produce a mean sea-level pressure response that is similar in magnitude and pattern to the atmospheric circulation errors in the coupled climate model. The work also suggests that errors in the coupled model storm tracks and North Atlantic Oscillation, compared to reanalysis data, can also be explained partly by these SST errors. Our results suggest that both the error in the Gulf Stream separation location and the path of the North Atlantic Current around the Grand Banks play important roles in affecting the atmospheric circulation. Reducing these coupled model errors could improve significantly the representation of the large-scale atmospheric circulation of the North Atlantic and European region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations and numerical modelling experiments provide evidence for links between variability in the Atlantic Meridional Overturning Circulation (AMOC) and global climate patterns. Reduction in the strength of the overturning circulation is thought to have played a key role in rapid climate change in the past and may have the potential to significantly influence climate change in the future, as noted in the last two IPCC assessment reports (2001, 2007). Both IPCC reports also highlighted the significant uncertainties that exist regarding the future behaviour of the AMOC under global warming. Model results suggest that changes in the AMOC can impact surface air temperature, precipitation patterns and sea level, particularly in areas bordering the North Atlantic, thus affecting human populations. Here current understanding of past, present and future change in the AMOC and the effects of such changes on climate are reviewed. The focus is on observations of the AMOC, how the AMOC influences climate and in what way the AMOC is likely to change over the next few decades and the 21st 34 century. The potential for decadal prediction of the AMOC is also discussed. Finally, the outstanding challenges and possible future directions for AMOC research are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extratropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact due to the strong surface winds and associated storm surges in coastal areas. Here we show that sting jets are a common feature of windstorms; up to a third of the 100 most intense North Atlantic winter windstorms over the last two decades satisfy conditions for sting jets. The sting jet is a mesoscale descending airstream that can cause strong near-surface winds in the dry slot of the cyclone, a region not usually associated with strong winds. Despite their localized transient nature these sting jets can cause significant damage, a prominent example being the storm that devastated southeast England on 16 October 1987. We present the first regional climatology of windstorms with sting jets. Previously analysed sting jet cases appear to have been exceptional in their track over northwest Europe rather than in their strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poleward shift of the mid-latitude storm tracks in response to anthropogenic greenhouse-gas forcing has been diagnosed in climate model simulations1, 2. Explanations of this effect have focused on atmospheric dynamics3, 4, 5, 6, 7. However, in contrast to storm tracks in other regions, the North Atlantic storm track responds by strengthening and extending farther east, in particular on its southern flank8. These adjustments are associated with an intensification and extension of the eddy-driven jet towards western Europe9 and are expected to have considerable societal impacts related to a rise in storminess in Europe10, 11, 12. Here, we apply a regression analysis to an ensemble of coupled climate model simulations to show that the coupling between ocean and atmosphere shapes the distinct storm-track response to greenhouse-gas forcing in the North Atlantic region. In the ensemble of simulations we analyse, at least half of the differences between the storm-track responses of different models are associated with uncertainties in ocean circulation changes. We compare the fully coupled simulations with both the associated slab model simulations and an ocean-forced experiment with one climate model to establish causality. We conclude that uncertainties in the response of the North Atlantic storm track to anthropogenic emissions could be reduced through tighter constraints on the future ocean circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed analysis is undertaken of the Atlantic-European climate using data from 500-year-long proxy-based climate reconstructions, a long climate simulation with perpetual 1990 forcing, as well as two global and one regional climate change scenarios. The observed and simulated interannual variability and teleconnectivity are compared and interpreted in order to improve the understanding of natural climate variability on interannual to decadal time scales for the late Holocene. The focus is set on the Atlantic-European and Alpine regions during the winter and summer seasons, using temperature, precipitation, and 500 hPa geopotential height fields. The climate reconstruction shows pronounced interdecadal variations that appear to “lock” the atmospheric circulation in quasi-steady long-term patterns over multi-decadal periods controlling at least part of the temperature and precipitation variability. Different circulation patterns are persistent over several decades for the period 1500 to 1900. The 500-year-long simulation with perpetual 1990 forcing shows some substantial differences, with a more unsteady teleconnectivity behaviour. Two global scenario simulations indicate a transition towards more stable teleconnectivity for the next 100 years. Time series of reconstructed and simulated temperature and precipitation over the Alpine region show comparatively small changes in interannual variability within the time frame considered, with the exception of the summer season, where a substantial increase in interannual variability is simulated by regional climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the sensitivity of the climate system to volcanic aerosol forcing in the third climate configuration of the Met Office Unified Model (HadCM3). The main test case was based on the 1880s when there were several volcanic eruptions, the well-known Krakatau being the largest. These eruptions increased atmospheric aerosol concentrations and induced a period of global cooling surface temperatures. In this study, an ensemble of HadCM3 has been integrated with the standard set of radiative forcings and aerosols from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations, from 1860 to present. A second ensemble removes the volcanic aerosols from 1880 to 1899. The all-forcings ensemble shows an attributable 1.2-Sv (1 Sv ≡ 106 m3 s−1) increase in the Atlantic meridional overturning circulation (AMOC) at 45°N—with a 0.04-PW increase in meridional heat transport at 40°N and increased northern Atlantic SSTs—starting around 1894, approximately 11 years after the first eruption, and lasting a further 10 years at least. The mechanisms responsible are traced to the Arctic, with suppression of the global water cycle (high-latitude precipitation), which leads to an increase in upper-level Arctic and Greenland Sea salinities. This then leads to increased convection in the Greenland–Iceland–Norwegian (GIN) Seas, enhanced Denmark Strait overflows, and AMOC changes with density anomalies traceable southward along the western Atlantic boundary. The authors investigate whether a similar response to the Pinatubo eruption in 1991 could still be ongoing, but do not find strong evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aircraft flying through cold ice-supersaturated air produce persistent contrails which contribute to the climate impact of aviation. Here, we demonstrate the importance of the weather situation, together with the route and altitude of the aircraft through this, on estimating contrail coverage. The results have implications for determining the climate impact of contrails as well as potential mitigation strategies. Twenty-one years of re-analysis data are used to produce a climatological assessment of conditions favorable for persistent contrail formation between 200 and 300 hPa over the north Atlantic in winter. The seasonal-mean frequency of cold ice-supersaturated regions is highest near 300 hPa, and decreases with altitude. The frequency of occurrence of ice-supersaturated regions varies with large-scale weather pattern; the most common locations are over Greenland, on the southern side of the jet stream and around the northern edge of high pressure ridges. Assuming aircraft take a great circle route, as opposed to a more realistic time-optimal route, is likely to lead to an error in the estimated contrail coverage, which can exceed 50% for westbound north Atlantic flights. The probability of contrail formation can increase or decrease with height, depending on the weather pattern, indicating that the generic suggestion that flying higher leads to fewer contrails is not robust.