156 resultados para Wind tunnels
Resumo:
Dipolar streamers are coronal structures formed by open solar flux converging from coronal holes of opposite polarity. Thus the dipolar streamer belt traces the coronal foot print of the heliospheric current sheet (HCS), and it is strongly associated with the origin of slow solar wind. Pseudostreamers, on the other hand, separate converging regions of open solar flux from coronal holes of the same polarity and do not contain current sheets. They have recently received a great deal of interest as a possible additional source of slow solar wind. Here we add to that growing body of work by using the potential-field source-surface model to determine the occurrence and location of dipolar and pseudostreamers over the last three solar cycles. In addition to providing new information about pseudostreamer morphology, the results help explain why the observations taken during the first Ulysses perihelion pass in 1995 showed noncoincidence between dipolar streamer belt and the locus of slowest flow. We find that Carrington rotation averages of the heliographic latitudes of dipolar and pseudostreamer belts are systematically shifted away from the equator, alternately in opposite directions, with a weak solar cycle periodicity, thus keeping slow wind from the web of combined streamer belts approximately symmetric about the equator. The largest separation of dipolar and pseudostreamer belts occurred close to the Ulysses pass, allowing a unique opportunity to see that slow wind from pseudostreamer belts north of the southward-displaced dipolar belt was responsible for the noncoincident pattern.
Resumo:
As the integration of vertical axis wind turbines in the built environment is a promising alternative to horizontal axis wind turbines, a 2D computational investigation of an augmented wind turbine is proposed and analysed. In the initial CFD analysis, three parameters are carefully investigated: mesh resolution; turbulence model; and time step size. It appears that the mesh resolution and the turbulence model affect result accuracy; while the time step size examined, for the unsteady nature of the flow, has small impact on the numerical results. In the CFD validation of the open rotor with secondary data, the numerical results are in good agreement in terms of shape. It is, however, observed a discrepancy factor of 2 between numerical and experimental data. Successively, the introduction of an omnidirectional stator around the wind turbine increases the power and torque coefficients by around 30–35% when compared to the open case; but attention needs to be given to the orientation of the stator blades for optimum performance. It is found that the power and torque coefficients of the augmented wind turbine are independent of the incident wind speed considered.
Resumo:
In the concluding paper of this tetralogy, we here use the different geomagnetic activity indices to reconstruct the near-Earth interplanetary magnetic field (IMF) and solar wind flow speed, as well as the open solar flux (OSF) from 1845 to the present day. The differences in how the various indices vary with near-Earth interplanetary parameters, which are here exploited to separate the effects of the IMF and solar wind speed, are shown to be statistically significant at the 93% level or above. Reconstructions are made using four combinations of different indices, compiled using different data and different algorithms, and the results are almost identical for all parameters. The correction to the aa index required is discussed by comparison with the Ap index from a more extensive network of mid-latitude stations. Data from the Helsinki magnetometer station is used to extend the aa index back to 1845 and the results confirmed by comparison with the nearby St Petersburg observatory. The optimum variations, using all available long-term geomagnetic indices, of the near-Earth IMF and solar wind speed, and of the open solar flux, are presented; all with ±2sigma� uncertainties computed using the Monte Carlo technique outlined in the earlier papers. The open solar flux variation derived is shown to be very similar indeed to that obtained using the method of Lockwood et al. (1999).
Resumo:
The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (~1%) but rapid decrease in galactic cosmic ray flux, a moderate (~6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer months (June to August). Though this reduced the number of solar wind triggers to 32, the response in both lightning and thunder day data remained statistically significant. This modulation of lightning by regular and predictable solar wind events may be beneficial to medium range forecasting of hazardous weather.
Resumo:
This paper for the first time discuss the wind pressure distribution on the building surface immersed in wind profile of low-level jet rather than a logarithmic boundary-layer profile. Two types of building models are considered, low-rise and high-rise building, relative to the low-level jet height. CFD simulation is carried out. The simulation results show that the wind pressure distribution immersed in a low-jet wine profile is very different from the typical uniform and boundary-layer flow. For the low-rise building, the stagnation point is located at the upper level of windward façade for the low-level jet wind case, and the separation zone above the roof top is not as obvious as the uniform case. For the high-rise building model, the height of stagnation point is almost as high as the low-level jet height.
Resumo:
High resolution surface wind fields covering the global ocean, estimated from remotely sensed wind data and ECMWF wind analyses, have been available since 2005 with a spatial resolution of 0.25 degrees in longitude and latitude, and a temporal resolution of 6h. Their quality is investigated through various comparisons with surface wind vectors from 190 buoys moored in various oceanic basins, from research vessels and from QuikSCAT scatterometer data taken during 2005-2006. The NCEP/NCAR and NCDC blended wind products are also considered. The comparisons performed during January-December 2005 show that speeds and directions compare well to in-situ observations, including from moored buoys and ships, as well as to the remotely sensed data. The root-mean-squared differences of the wind speed and direction for the new blended wind data are lower than 2m/s and 30 degrees, respectively. These values are similar to those estimated in the comparisons of hourly buoy measurements and QuickSCAT near real time retrievals. At global scale, it is found that the new products compare well with the wind speed and wind vector components observed by QuikSCAT. No significant dependencies on the QuikSCAT wind speed or on the oceanic region considered are evident.Evaluation of high-resolution surface wind products at global and regional scales
Resumo:
Analysis of the forecasts and hindcasts from the ECMWF 32-day forecast model reveals that there is statistically significant skill in predicting weekly mean wind speeds over areas of Europe at lead times of at least 14–20 days. Previous research on wind speed predictability has focused on the short- to medium-range time scales, typically finding that forecasts lose all skill by the later part of the medium-range forecast. To the authors’ knowledge, this research is the first to look beyond the medium-range time scale by taking weekly mean wind speeds, instead of averages at hourly or daily resolution, for the ECMWF monthly forecasting system. It is shown that the operational forecasts have high levels of correlation (~0.6) between the forecasts and observations over the winters of 2008–12 for some areas of Europe. Hindcasts covering 20 winters show a more modest level of correlation but are still skillful. Additional analysis examines the probabilistic skill for the United Kingdom with the application of wind power forecasting in mind. It is also shown that there is forecast “value” for end users (operating in a simple cost/loss ratio decision-making framework). End users that are sensitive to winter wind speed variability over the United Kingdom, Germany, and some other areas of Europe should therefore consider forecasts beyond the medium-range time scale as it is clear there is useful information contained within the forecast.
Resumo:
The MATLAB model is contained within the compressed folders (versions are available as .zip and .tgz). This model uses MERRA reanalysis data (>34 years available) to estimate the hourly aggregated wind power generation for a predefined (fixed) distribution of wind farms. A ready made example is included for the wind farm distribution of Great Britain, April 2014 ("CF.dat"). This consists of an hourly time series of GB-total capacity factor spanning the period 1980-2013 inclusive. Given the global nature of reanalysis data, the model can be applied to any specified distribution of wind farms in any region of the world. Users are, however, strongly advised to bear in mind the limitations of reanalysis data when using this model/data. This is discussed in our paper: Cannon, Brayshaw, Methven, Coker, Lenaghan. "Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in Great Britain". Submitted to Renewable Energy in March, 2014. Additional information about the model is contained in the model code itself, in the accompanying ReadMe file, and on our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/
Resumo:
It is widely thought that changes in both the surface buoyancy fluxes and wind stress drive variability in the Atlantic meridional overturning circulation (AMOC), but that they drive variability on different time scales. For example, wind forcing dominates short-term variability through its effects on Ekman currents and coastal upwelling, whereas buoyancy forcing is important for longer time scales (multiannual and decadal). However, the role of the wind forcing on multiannual to decadal time scales is less clear. Here the authors present an analysis of simulations with the Nucleus for European Modelling of the Ocean (NEMO) ocean model with the aim of explaining the important drivers of the zonal density gradient at 26°N, which is directly related to the AMOC. In the experiments, only one of either the wind stress or the buoyancy forcing is allowed to vary in time, whereas the other remains at its seasonally varying climatology. On subannual time scales, variations in the density gradient, and in the AMOC minus Ekman, are driven largely by local wind-forced coastal upwelling at both the western and eastern boundaries. On decadal time scales, buoyancy forcing related to the North Atlantic Oscillation dominates variability in the AMOC. Interestingly, however, it is found that wind forcing also plays a role at longer time scales, primarily impacting the interannual variability through the excitation of Rossby waves in the central Atlantic, which propagate westward to interact with the western boundary, but also by modulating the decadal time-scale response to buoyancy forcing.
Resumo:
A statistical–dynamical downscaling (SDD) approach for the regionalization of wind energy output (Eout) over Europe with special focus on Germany is proposed. SDD uses an extended circulation weather type (CWT) analysis on global daily mean sea level pressure fields with the central point being located over Germany. Seventy-seven weather classes based on the associated CWT and the intensity of the geostrophic flow are identified. Representatives of these classes are dynamically downscaled with the regional climate model COSMO-CLM. By using weather class frequencies of different data sets, the simulated representatives are recombined to probability density functions (PDFs) of near-surface wind speed and finally to Eout of a sample wind turbine for present and future climate. This is performed for reanalysis, decadal hindcasts and long-term future projections. For evaluation purposes, results of SDD are compared to wind observations and to simulated Eout of purely dynamical downscaling (DD) methods. For the present climate, SDD is able to simulate realistic PDFs of 10-m wind speed for most stations in Germany. The resulting spatial Eout patterns are similar to DD-simulated Eout. In terms of decadal hindcasts, results of SDD are similar to DD-simulated Eout over Germany, Poland, Czech Republic, and Benelux, for which high correlations between annual Eout time series of SDD and DD are detected for selected hindcasts. Lower correlation is found for other European countries. It is demonstrated that SDD can be used to downscale the full ensemble of the Earth System Model of the Max Planck Institute (MPI-ESM) decadal prediction system. Long-term climate change projections in Special Report on Emission Scenarios of ECHAM5/MPI-OM as obtained by SDD agree well to the results of other studies using DD methods, with increasing Eout over northern Europe and a negative trend over southern Europe. Despite some biases, it is concluded that SDD is an adequate tool to assess regional wind energy changes in large model ensembles.
Resumo:
Spatially dense observations of gust speeds are necessary for various applications, but their availability is limited in space and time. This work presents an approach to help to overcome this problem. The main objective is the generation of synthetic wind gust velocities. With this aim, theoretical wind and gust distributions are estimated from 10 yr of hourly observations collected at 123 synoptic weather stations provided by the German Weather Service. As pre-processing, an exposure correction is applied on measurements of the mean wind velocity to reduce the influence of local urban and topographic effects. The wind gust model is built as a transfer function between distribution parameters of wind and gust velocities. The aim of this procedure is to estimate the parameters of gusts at stations where only wind speed data is available. These parameters can be used to generate synthetic gusts, which can improve the accuracy of return periods at test sites with a lack of observations. The second objective is to determine return periods much longer than the nominal length of the original time series by considering extreme value statistics. Estimates for both local maximum return periods and average return periods for single historical events are provided. The comparison of maximum and average return periods shows that even storms with short average return periods may lead to local wind gusts with return periods of several decades. Despite uncertainties caused by the short length of the observational records, the method leads to consistent results, enabling a wide range of possible applications.
Resumo:
Wind energy potential in Iberia is assessed for recent–past (1961–2000) and future (2041–2070) climates. For recent–past, a COSMO-CLM simulation driven by ERA-40 is used. COSMO-CLM simulations driven by ECHAM5 following the A1B scenario are used for future projections. A 2 MW rated power wind turbine is selected. Mean potentials, inter-annual variability and irregularity are discussed on annual/seasonal scales and on a grid resolution of 20 km. For detailed regional assessments eight target sites are considered. For recent–past conditions, the highest daily mean potentials are found in winter over northern and eastern Iberia, particularly on high-elevation or coastal regions. In northwestern Iberia, daily potentials frequently reach maximum wind energy output (50 MWh day−1), particularly in winter. Southern Andalucía reveals high potentials throughout the year, whereas the Ebro valley and central-western coast show high potentials in summer. The irregularity in annual potentials is moderate (<15% of mean output), but exacerbated in winter (40%). Climate change projections show significant decreases over most of Iberia (<2 MWh day−1). The strong enhancement of autumn potentials in Southern Andalucía is noteworthy (>2 MWh day−1). The northward displacement of North Atlantic westerly winds (autumn–spring) and the strengthening of easterly flows (summer) are key drivers of future projections.
Resumo:
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.
Resumo:
With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind power generation events such as prolonged periods of low (or high) generation and ramps in generation, are a growing concern for the efficient and secure operation of national power systems. As extreme events occur infrequently, long and reliable meteorological records are required to accurately estimate their characteristics. Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets for power system applications, many of which focus on long-term average statistics such as monthly-mean generation. Here we demonstrate that reanalysis data can also be used to estimate the frequency of relatively short-lived extreme events (including ramping on sub-daily time scales). Verification against 328 surface observation stations across the United Kingdom suggests that near-surface wind variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced using reanalysis, with no need for costly dynamical downscaling. A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in Great Britain (GB), assuming a fixed, modern distribution of wind farms. The resultant generation estimates are highly correlated with recorded data from National Grid in the recent period, both for instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year time series is then used to quantify the frequency with which different extreme GB-wide wind power generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into the nature of extreme wind power generation events are described, including (i) that the number of prolonged low or high generation events is well approximated by a Poission-like random process, and (ii) whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar in both summer and winter. An up-to-date version of the GB case study data as well as the underlying model are freely available for download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/.