110 resultados para Unsupervised classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson is a neurodegenerative disease, in which tremor is the main symptom. This paper investigates the use of different classification methods to identify tremors experienced by Parkinsonian patients.Some previous research has focussed tremor analysis on external body signals (e.g., electromyography, accelerometer signals, etc.). Our advantage is that we have access to sub-cortical data, which facilitates the applicability of the obtained results into real medical devices since we are dealing with brain signals directly. Local field potentials (LFP) were recorded in the subthalamic nucleus of 7 Parkinsonian patients through the implanted electrodes of a deep brain stimulation (DBS) device prior to its internalization. Measured LFP signals were preprocessed by means of splinting, down sampling, filtering, normalization and rec-tification. Then, feature extraction was conducted through a multi-level decomposition via a wavelettrans form. Finally, artificial intelligence techniques were applied to feature selection, clustering of tremor types, and tremor detection.The key contribution of this paper is to present initial results which indicate, to a high degree of certainty, that there appear to be two distinct subgroups of patients within the group-1 of patients according to the Consensus Statement of the Movement Disorder Society on Tremor. Such results may well lead to different resultant treatments for the patients involved, depending on how their tremor has been classified. Moreover, we propose a new approach for demand driven stimulation, in which tremor detection is also based on the subtype of tremor the patient has. Applying this knowledge to the tremor detection problem, it can be concluded that the results improve when patient clustering is applied prior to detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient and robust method to measure vitamin D (25-hydroxy vitamin D3 (25(OH)D3) and 25-hydroxy vitamin D2 in dried blood spots (DBS) has been developed and applied in the pan-European multi-centre, internet-based, personalised nutrition intervention study Food4Me. The method includes calibration with blood containing endogenous 25(OH)D3, spotted as DBS and corrected for haematocrit content. The methodology was validated following international standards. The performance characteristics did not reach those of the current gold standard liquid chromatography-MS/MS in plasma for all parameters, but were found to be very suitable for status-level determination under field conditions. DBS sample quality was very high, and 3778 measurements of 25(OH)D3 were obtained from 1465 participants. The study centre and the season within the study centre were very good predictors of 25(OH)D3 levels (P<0·001 for each case). Seasonal effects were modelled by fitting a sine function with a minimum 25(OH)D3 level on 20 January and a maximum on 21 July. The seasonal amplitude varied from centre to centre. The largest difference between winter and summer levels was found in Germany and the smallest in Poland. The model was cross-validated to determine the consistency of the predictions and the performance of the DBS method. The Pearson's correlation between the measured values and the predicted values was r 0·65, and the sd of their differences was 21·2 nmol/l. This includes the analytical variation and the biological variation within subjects. Overall, DBS obtained by unsupervised sampling of the participants at home was a viable methodology for obtaining vitamin D status information in a large nutritional study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the problem of feature selection in neuroimaging features from structural MRI brain images for the classification of subjects as healthy controls, suffering from Mild Cognitive Impairment or Alzheimer’s Disease. A Genetic Algorithm wrapper method for feature selection is adopted in conjunction with a Support Vector Machine classifier. In very large feature sets, feature selection is found to be redundant as the accuracy is often worsened when compared to an Support Vector Machine with no feature selection. However, when just the hippocampal subfields are used, feature selection shows a significant improvement of the classification accuracy. Three-class Support Vector Machines and two-class Support Vector Machines combined with weighted voting are also compared with the former and found more useful. The highest accuracy achieved at classifying the test data was 65.5% using a genetic algorithm for feature selection with a three-class Support Vector Machine classifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The personalised conditioning system (PCS) is widely studied. Potentially, it is able to reduce energy consumption while securing occupants’ thermal comfort requirements. It has been suggested that automatic optimised operation schemes for PCS should be introduced to avoid energy wastage and discomfort caused by inappropriate operation. In certain automatic operation schemes, personalised thermal sensation models are applied as key components to help in setting targets for PCS operation. In this research, a novel personal thermal sensation modelling method based on the C-Support Vector Classification (C-SVC) algorithm has been developed for PCS control. The personal thermal sensation modelling has been regarded as a classification problem. During the modelling process, the method ‘learns’ an occupant’s thermal preferences from his/her feedback, environmental parameters and personal physiological and behavioural factors. The modelling method has been verified by comparing the actual thermal sensation vote (TSV) with the modelled one based on 20 individual cases. Furthermore, the accuracy of each individual thermal sensation model has been compared with the outcomes of the PMV model. The results indicate that the modelling method presented in this paper is an effective tool to model personal thermal sensations and could be integrated within the PCS for optimised system operation and control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea-ice concentrations in the Laptev Sea simulated by the coupled North Atlantic-Arctic Ocean-Sea-Ice Model and Finite Element Sea-Ice Ocean Model are evaluated using sea-ice concentrations from Advanced Microwave Scanning Radiometer-Earth Observing System satellite data and a polynya classification method for winter 2007/08. While developed to simulate largescale sea-ice conditions, both models are analysed here in terms of polynya simulation. The main modification of both models in this study is the implementation of a landfast-ice mask. Simulated sea-ice fields from different model runs are compared with emphasis placed on the impact of this prescribed landfast-ice mask. We demonstrate that sea-ice models are not able to simulate flaw polynyas realistically when used without fast-ice description. Our investigations indicate that without landfast ice and with coarse horizontal resolution the models overestimate the fraction of open water in the polynya. This is not because a realistic polynya appears but due to a larger-scale reduction of ice concentrations and smoothed ice-concentration fields. After implementation of a landfast-ice mask, the polynya location is realistically simulated but the total open-water area is still overestimated in most cases. The study shows that the fast-ice parameterization is essential for model improvements. However, further improvements are necessary in order to progress from the simulation of large-scale features in the Arctic towards a more detailed simulation of smaller-scaled features (here polynyas) in an Arctic shelf sea.